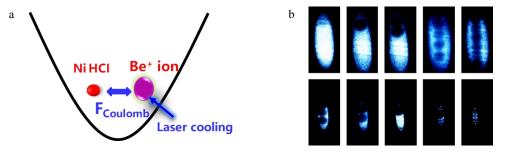
Progress on Ni¹²⁺ based highly charged ion clocks

Shaolong Chen¹, Zhiqiang Zhou^{1,2}, Jiguang Li³, Tingxian Zhang⁴, Chengbin Li¹, Tingyun Shi¹, Yao Huang¹, Hua Guan^{1,5#}, Kelin Gao^{1#}

¹State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, Wuhan 430071, China.

²University of Chinese Academy of Sciences, Beijing 100049, China
³Institute of Applied Physics and Computational Mathematics, Beijing 100088, China
⁴School of Science, Lanzhou University of Technology, Lanzhou; 730050, China


⁵Wuhan Institute of Quantum Technology, Wuhan 430206, China

Abstract:

Highly charged ions (HCIs) have promising clock transitions with potential accuracy below 10⁻¹⁹, Furthermore, they are sensitive to fine structure constant α and can be used to explore new physics beyond the standard physical model^[1,2,3,4], we utilized the Shanghai-Wuhan Electron Beam Ion Trap (SW-EBIT) ^[5] to perform a high-precision measurement of the M1 transition of Ni-HCI. Our approach involved an improved calibration scheme for the spectra, utilizing auxiliary Ar⁺ lines for calibration and correction. Our final measured result of the M1 transition wavelength demonstrate a five-fold improvement in accuracy compared to our previous findings^[6], reaching sub-picometer level accuracy^[7]. In addition, High energy HCI bunches were slowed down^[8] to the ion trap and cooled in a room temperature ion trap by means sympathetic cooling through the laser-cooled Be⁺ ions. The Ni-HCIs temperature were decreased to hundred millikelvin level from megakelvin.

Table I. Error budget: The final result and main error sources to the wavelength measurement

Source of error	Shift (pm)	Error (pm)
Line centroid determination	511582.05	0.21
Calibration system	/	0.33
Isotope shift	0.06	0.06
Stark shift	/	< 0.01
2 nd -order Zeeman effect	/	< 0.01
Total	511582.11	0.40

Fig. 1. The sympathetic cooling of HCIs. a: Sympathetic cooling Schematic Image; b: Coulomb crystal of Be⁺ and Ni HCI(the dark circular shapes) -- The process of HCI from being injected and trapped and subsequently lost one by one.

huaguan@wipm.ac.cn, klgao@wipm.ac.cn

References:

- [1] J. C. Berengut, et al, Phys. Rev. Lett. 105, 120801 (2010).
- [2] A. Derevianko, et al, Phys. Rev. Lett. 109, 180801 (2012).
- [3] M. G. Kozlov, et al, Rev. Mod. Phys. 90, 045005(2018).

- [4] L. Schmöger, et al, Science. **347**, 1233 (2015).
- [5] S.Y. Liang, et al, Rev. Sci. Intrum. 90, 093301 (2019).
- [6] S.Y. Liang, et al, Phys. Rev. A 103, 22804 (2021).
- [7] S.L. Chen, et al, arXiv:2303.04552(2023).
- [8] Z.Q. Zhou, et al, AIP Adv. 12, 035220(2022).