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The 21 cm probes to CD/EoR

Using CMB as background 

à 1. The sky-averaged 21-cm brightness -- the global 21cm spectrum

à 2. 21 cm tomography 

Using high-z radio point sources as background 

à 3. 21 cm forest (absorption lines) (e.g. Carilli et al. 2002; YX et al. 2009, 2010, 2011)
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Figure 1. The 21-centimeter cosmic hydrogen signal. (a) Time evolution of
fluctuations in the 21-cm brightness from just before the first stars formed through
to the end of the reionization epoch. This evolution is pieced together from
redshift slices through a simulated cosmic volume [1]. Coloration indicates the
strength of the 21-cm brightness as it evolves through two absorption phases
(purple and blue), separated by a period (black) where the excitation temperature
of the 21-cm hydrogen transition decouples from the temperature of the hydrogen
gas, before it transitions to emission (red) and finally disappears (black) owing to
the ionization of the hydrogen gas. (b) Expected evolution of the sky-averaged
21-cm brightness from the “dark ages” at redshift 200 to the end of reionization,
sometime before redshift 6 (solid curve indicates the signal; dashed curve indicates
Tb = 0). The frequency structure within this redshift range is driven by several
physical processes, including the formation of the first galaxies and the heating
and ionization of the hydrogen gas. There is considerable uncertainty in the exact
form of this signal, arising from the unknown properties of the first galaxies.

by a logarithmic slope or “tilt” nS = 0.95, and the variance of matter fluctuations
today smoothed on a scale of 8h�1 Mpc is �8 = 0.8. The values quoted are indicative
of those found by the latest measurements [2].

The layout of this review is as follows. We first discuss the basic atomic physics
of the 21 cm line in §2. In §3, we turn to the evolution of the sky averaged 21 cm
signal and the feasibility of observing it. In §4 we describe three-dimensional 21 cm
fluctuations, including predictions from analytical and numerical calculations. After
reionization, most of the 21 cm signal originates from cold gas in galaxies (which
is self-shielded from the background of ionizing radiation). In §5 we describe the
prospects for intensity mapping of this signal as well as using the same technique
to map the cumulative emission of other atomic and molecular lines from galaxies
without resolving the galaxies individually. The 21 cm forest that is expected against
radio bright sources is described in §6. Finally, we conclude with an outlook for the
future in §7.

We direct interested readers to a number of other worthy reviews on the subject.
Ref. [3] provides a comprehensive overview of the entire field, and Ref. [4] takes a
more observationally orientated approach focussing on the near term observations of
reionization.

Receiver YX et al. 2011 MNRAS
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Extended Data Figure 1: The SARAS 3 antenna. The monocone antenna is shown, floating on water
on its raft. The antenna electronics is in an enclosure beneath the antenna ground plane and within the
raft; power is derived locally from Li-ion battery packs within the enclosure. Multi-core fibre optic cables
connect the antenna to the analogue signal conditioning unit (ASCU) in the base station on shore.
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observations using restricted spectral bands yield nearly identical 
best-fitting absorption profiles, with the highest signal-to-noise ratio 
reaching 52. In Fig. 2 we show representative cases of these fits.

We performed numerous hardware and processing tests to validate 
the detection. The 21-cm absorption profile is observed in data that 
span nearly two years and can be extracted at all local solar times and 
at all local sidereal times. It is detected by two identically designed 
instruments operated at the same site and located 150 m apart, and 
even after several hardware modifications to the instruments, includ-
ing orthogonal orientations of one of the antennas. Similar results for 
the absorption profile are obtained by using two independent pro-
cessing pipelines, which we tested using simulated data. The profile is 
detected using data processed via two different calibration techniques:  
absolute calibration and an additional differencing-based post- 
calibration process that reduces some possible instrumental errors. It 
is also detected using several sets of calibration solutions derived from 
 multiple laboratory measurements of the receivers and using  multiple 
on-site measurements of the reflection coefficients of the antennas. 
We modelled the sensitivity of the detection to several possible  
calibration errors and in all cases recovered profile amplitudes that 
are within the reported confidence range, as summarized in Table 1.  
An EDGES high-band instrument operates between 90 MHz and 
200 MHz at the same site using a nearly identical receiver and a scaled 
version of the low-band antennas. It does not produce a similar  feature 
at the scaled frequencies4. Analysis of radio-frequency interference 
in the observations, including in the FM radio band, shows that  
the absorption profile is inconsistent with typical spectral contribu-
tions from these sources.

We are not aware of any alternative astronomical or atmospheric 
mechanisms that are capable of producing the observed profile. H ii 
regions in the Galaxy have increasing optical depth with wavelength, 
blocking more background emission at lower frequencies, but they 
are observed primarily along the Galactic plane and generate mono-
tonic spectral profiles at the observed frequencies. Radio-frequency 
recombination lines in the Galactic plane create a ‘picket fence’ of 
narrow absorption lines separated by approximately 0.5 MHz at the 
observed frequencies5, but these lines are easy to identify and filter 
in the EDGES observations. The Earth’s ionosphere weakly absorbs 
radio signals at the observed frequencies and emits thermal radiation 
from hot electrons, but models and observations imply a broadband 
effect that varies depending on the ionospheric conditions6,7, including 
diurnal changes in the total electron content. This effect is fitted by 
our foreground model. Molecules of the hydroxyl radical and nitric 
oxide have spectral lines in the observed band and are present in the 
atmosphere, but the densities and line strengths are too low to produce 
substantial absorption.

The 21-cm line has a rest-frame frequency of 1,420 MHz. Expansion 
of the Universe redshifts the line to the observed band according to 
ν =  1,420/(1 +  z) MHz, where z is the redshift, which maps uniquely 
to the age of the Universe. The observed absorption profile is the con-
tinuous superposition of lines from gas across the observed redshift 
range and cosmological volume; hence, the shape of the profile traces 
the history of the gas across cosmic time and is not the result of the 

properties of an individual cloud. The observed absorption profile is 
centred at z ≈  17 and spans approximately 20 >  z >  15.

The intensity of the observable 21-cm signal from the early 
Universe is given as a brightness temperature relative to the micro-
wave background8:
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where xHi is the fraction of neutral hydrogen, Ωm and Ωb are the matter 
and baryon densities, respectively, in units of the critical density for a 
flat universe, h is the Hubble constant in units of 100 km s−1 Mpc−1, 
TR is the temperature of the background radiation, usually assumed to 
be from the background produced by the afterglow of the Big Bang, 
TS is the 21-cm spin temperature that defines the relative population 
of the hyperfine energy levels, and the factor of 0.023 K comes from 
atomic-line physics and the average gas density. The spin temperature 
is affected by the absorption of microwave photons, which couples TS 
to TR, as well as by resonant scattering of Lyman-α  photons and atomic 
collisions, both of which couple TS to the kinetic temperature of the 
gas TG.

The temperatures of the gas and the background radiation are 
 coupled in the early Universe through Compton scattering. This 
 coupling becomes ineffective in numerical models9,10 at z ≈  150, 
after which primordial gas cools adiabatically. In the absence of 
stars or non-standard physics, the gas temperature is expected to be 
9.3 K at z =  20, falling to 5.4 K at z =  15. The radiation temperature 
decreases more slowly owing to cosmological expansion, following 
T0(1 + z) with T0 =  2.725, and so is 57.2 K and 43.6 K at the same  
redshifts,  respectively. The spin temperature is initially coupled to the 
gas temperature as the gas cools below the radiation temperature, but 
eventually the decreasing density of the gas is insufficient to main-
tain this coupling and the spin temperature returns to the radiation 
temperature.

Redshift, z

14161820222426

B
rig

ht
ne

ss
 te

m
pe

ra
tu

re
, T

21
 (K

)

–0.6

–0.4

–0.2

0

0.2

H1

H2

H3

H4

H5

H6

P8

Age of the Universe (Myr)

300250200150

Figure 2 | Best-fitting 21-cm absorption profiles for each hardware case. 
Each profile for the brightness temperature T21 is added to its residuals and 
plotted against the redshift z and the corresponding age of the Universe. 
The thick black line is the model fit for the hardware and analysis 
configuration with the highest signal-to-noise ratio (equal to 52; H2;  
see Methods), processed using 60–99 MHz and a four-term polynomial 
(see equation (2) in Methods) for the foreground model. The thin solid 
lines are the best fits from each of the other hardware configurations  
(H1, H3–H6). The dash-dotted line (P8), which extends to z >  26, is 
reproduced from Fig. 1e and uses the same data as for the thick black line 
(H2), but a different foreground model and the full frequency band.

Table 1 | Sensitivity to possible calibration errors

Error source
Estimated  
uncertainty

Modelled 
error level

Recovered  
amplitude (K)

LNA S11 magnitude 0.1 dB 1.0 dB 0.51
LNA S11 phase (delay) 20 ps 100 ps 0.48
Antenna S11 magnitude 0.02 dB 0.2 dB 0.50
Antenna S11 phase (delay) 20 ps 100 ps 0.48
No loss correction N/A N/A 0.51
No beam correction N/A N/A 0.48

The estimated uncertainty for each case is based on empirical values from laboratory 
 measurements and repeatability tests. Modelled error levels were chosen conservatively to 
be "ve and ten times larger than the estimated uncertainties for the phases and magnitudes, 
 respectively. LNA, low-noise ampli"er; S11, input re#ection coe$cient; N/A, not applicable.

Bowman et al. 2018
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Extended Data Figure 2 | Low-band antennas. a, The low-1 antenna 
with the 30 m ×  30 m mesh ground plane. The darker inner square is the 
original 10 m ×  10 m mesh. The control hut is 50 m from the antenna.  
b, A close view of the low-2 antenna. The two elevated metal panels form 

the dipole-based antenna and are supported by fibreglass legs. The balun 
consists of the two vertical brass tubes in the middle of the antenna. The 
balun shield is the shoebox-sized metal shroud around the bottom of the 
balun. The receiver is under the white metal platform and is not visible.

EDGES-Low-band

SARAS 3

Singh et al. 2112.06778 
Barry et al. arXiv:2110.06173

Interferometers

4 The HERA Collaboration

Figure 1. A view of HERA from January 2017. The data in this work were taken during Phase I, when HERA was composed
of 14m parabolic dishes with sleeved dipole feeds in mesh cages suspended at prime focus. These feeds were later replaced with
wide-band Vivaldi feeds, expanding HERA’s bandwidth from 100–200MHz (Phase I) to 50–250MHz (Phase II).

better handle the larger volume of data considered, the
core analysis techniques remain largely unchanged.2

We begin in Section 2 by detailing the observations
themselves and the basic cuts performed to ensure data
quality. Then in Section 3 we review the data reduction
steps performed to go from raw visibilities all the way
to power spectra, highlighting updated analysis tech-
niques and revised analysis choices. These techniques
are tested with end-to-end pipeline simulations designed
to validate our analysis choices and software in Section 4,
in which we quantify a number of potential small bi-
ases and reproduce a few key figures from Aguirre et al.
(2022) in the context of our new limits. In Section 5,
we can then present our final power spectrum estimates,
error bars, and upper limits. We build confidence in our
results in Section 6 by applying a variety of statistical
tests on our power spectra and how they integrate down
across baselines and time. In Section 7, we report the
impact of our new limits on the various approaches to as-
trophysical modeling and inference used in H22b, detail-
ing our updated constraints on the epoch of reionization
and the cosmic dawn. We conclude in Section 8, looking
forward to potential future analyses of these data and
data from the full HERA Phase II system.

2. OBSERVATIONS AND DATA SELECTION

In this work, we analyze observations with the HERA
Phase I system that were performed over the period from
September 29, 2017 (JD 2458026) through March 31,
2018 (JD 2458208). In Table 1, we summarize the key

2Following H22a, we also adopt a ⇤CDM cosmology (Planck
Collaboration et al. 2016) with ⌦⇤ = 0.6844, ⌦b = 0.04911,
⌦c = 0.26442, and H0 = 67.27 km/s/Mpc.

Table 1. HERA Phase I observing and array specifications.

Array Location �30.72�S, 21.43�E

Total Antennas Connected 47–71

Total Antennas Used 35–41

Shortest Baseline 14.6m

Longest Unflagged Baseline 124.8m

Minimum Frequency 100MHz

Maximum Frequency 200MHz

Channels 1024

Channel Width 97.66 kHz

Integration Time 10.7 s

Nightly Observing Duration 12 hours

Total Nights With Data 182

Total Nights Used 94

observational parameters of the instrument. For more
detail about the precise configuration of the instrument,
its signal chain components, and its FX correlator ar-
chitecture, we refer the reader to DeBoer et al. (2017)
and H22a. In this section, we discuss the process by
which a selection of high-quality nights and antennas
was performed.

2.1. Selection of Nights and Epochs

Of the 182 nights during this season of simultaneous
construction, commissioning, and observing, a signifi-
cant fraction of nights was discarded for a variety of
reasons. Most of these were hardware failures, including
network outages, power outages, too many low- and/or
high-power antennas, a briefly broadcasting antenna,
broken receivers, and broken X-engines. Some were due
to site issues, including high winds, a lightning storm,

1. 21-cm global spectrum 2. 21-cm tomography HERA

Current upper limits of 21 cm signals from CD/EoR
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Analytical models of reionization

distribution functions (PDFs) produced thusly are shown by the
solid curves in Figure 6 for ionized regions (top panel ) and neutral
regions (bottompanel ). Curves correspond to (z; x̄H i)¼ (10; 0:89),
(9.25, 0.79), (8.50, 0.61), (8.00, 0.45), (7.50, 0.27), and (7.00, 0.10),
from left to right in the top panel, respectively (or from right to
left in the bottom panel ). All curves are normalized so that the
probability density integrates to unity.

It is useful to compare these distributions to the analytic bubble
mass function of Furlanetto et al. (2004c); although this analytic
approach is motivated by the same excursion-set barriers as our
seminumerical approach, it does not account for the full geom-
etry of sources.We compute the probability distribution from the

analytic model by assuming purely spherical bubbles and convolv-
ing with the volume-weighted distance to the sphere’s edge,

p(r) dr ¼ 2!r 2 dr

1" x̄H ið Þ

Z
dR nb(R) 1" r

2R

! "
; ð15Þ

where nb(R) is the comoving number density of bubbles with
radii between R and Rþ dR (taken from Furlanetto et al. 2004c).
Several points are evident from Figures 5 and 6. As expected

(e.g., Furlanetto et al. 2004c, 2006a; McQuinn et al. 2007), there
is a well-defined bubble scale at each neutral fraction, despite
some scatter in the sizes. This scale also gets more pronounced

Fig. 5.—Slices through the 2003 ionization field at z ¼ 10, 9, 8.25, and 7.25 (left to right across rows). With the assumption of " ¼ 15:1, these redshifts correspond to
x̄H i ¼ 0:89, 0.74, 0.53, and 0.18, respectively. All slices are 100 Mpc on a side and 0.5 Mpc deep. The bottom left panel corresponds to the halo field in the top right
panel of Fig. 3, generated on a high-resolution 12003 grid. [See the electronic edition of the Journal for a color version of this figure.]

MESINGER & FURLANETTO670 Vol. 669

as they are compared at similar neutral fractions, implying that
the large-scale neutral islands are dominant in determining the
morphology of the ionization field. However, the reionization
process is much faster in the absence of small absorbers.
Adopting ζ=30, the reionization completes at z 7.61end =
(when the mean neutral fraction x 0.01H I < ) in the case
without small-scale absorbers, compared with z 7.07end = in
the simulation with absorbers. Therefore, the small-scale dense
absorbers have only a moderate effect on the morphology of
the ionization field at a given global neutral fraction, but could
delay or prolong the reionization process significantly.

4.1. Island Size Distribution

In Figure 3, we show the comoving size distributions of
neutral islands for various global neutral fractions. The neutral

islands are selected using the SAM, with the critical neutral
fraction set to f 0.5c

H I
= . The resulting size distributions of the

neutral islands are shown for various global neutral fractions of
the universe with ζ=30 (thick lines) and ζ=15 (thin lines).
The evolution of the two models characterized by different ζ
values are very similar, which is consistent with our impression
from the morphology evolution: because the ionization
morphologies are similar at the same neutral fraction, the size
distribution should also be similar. In each case, there is a
characteristic scale for the peak of the neutral island size
distribution at each redshift, this scale decreases as the islands
are being ionized, but the change is very slow. Judging from
the simulation box, this is perhaps because the large neutral
islands only shrink gradually, and as they become smaller they
compensate for the disappearance of the smaller islands.
However, we must note that the size distribution of the

neutral islands depends on the neutral fraction threshold used to
define the islands. Figure 4 shows the size distribution of the

Figure 1. Three-dimensional visualization of the ionization fields from islandFAST with a box size of 100 h Mpc1- , 5123 resolution, and ζ=20. The neutral
islands are shown as black patches, and the ionized regions are left white. The three boxes have the mean neutral fractions of 0.16, 0.095, and 0.012, from left to right
respectively.

Figure 2. Slices of the ionization fields from islandFAST. The top panels are
for ζ=15, the middle panels are for ζ=30, and the bottom panels are for
ζ=30 but without the inclusion of small-scale absorbers. The three columns
show the neutral region as the mean neutral fraction decreasing from left to
right. The mean neutral fractions are 0.15, 0.093, and 0.011 for the top panels,
0.14, 0.10, and 0.013 for the middle panels, and 0.14, 0.11, and 0.013 for the
bottom panels.

Figure 3. Size distribution of neutral islands, using the SAM method with
neutral fraction threshold f 0.5c

H I = . The thick lines are from the simulation
with ζ=30, and the thin lines are from the simulation with ζ=15. The solid,
dashed, and dotted–dashed curves are for the three reionization stages with the
mean neutral fractions as indicated in the legend.
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l Excursion set models of reionization (ESMR)

Early stage – the “bubble model” (Furlanetto et al. 2004)

-- growing ionized bubbles

Late stage – the “island model” (Xu et al. 2014)

-- shrinking neutral islands

l Linear perturbation theory of reionization (LPTR)

-- Yi Mao’s talk 

(Zhang et al. 2006; reformulated in Mao et al. 2015)
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Figure 1. Two random walk trajectories in the excursion set theory. Here,
S = σ 2(M) denotes the variance of δM, which is the density fluctuation
smoothed on a mass scale M. All trajectories originate from (S, δ) = (0, 0).
The horizontal line represents a flat barrier, motivated by spherical collapse.
(A color version of this figure is available in the online journal.)

(Komatsu et al. 2011), but the results are not sensitive to these
parameters.

2. A BRIEF REVIEW OF THE EXCURSION SET THEORY
AND THE BUBBLE MODEL

2.1. The Excursion Set Model

Our island model is based on the excursion set theory. Here,
we give a brief review of the excursion set approach, especially
its application to the reionization process, i.e., the bubble model.
For a more comprehensive review of the excursion set theory
and its extensions and applications, we refer interested readers
to Zentner (2007) and references therein.

In what follows, we consider the density contrast field
evaluated at some early time but extrapolated to the present
day using linear perturbation theory. Considering a point x in
space, the density contrast δ(x) around it depends on the smooth
mass scale M under consideration. The variance of the density
fluctuations on a scale M, S = σ 2(M), monotonically decreases
with increasing M in our universe, so we can use S to represent
the scale M. Starting at M = ∞, i.e., S = 0, we move to
smaller and smaller scales surrounding the point of interest and
compute the smoothed density field as we go along. If we use a
k-space tophat window function to smooth the density field, at
each scale k a set of independent Fourier modes are added and
the trajectory of δ can be described by a random walk where
each step is independent, forming random trajectories on the
S–δ plane. Each of these trajectories starts from the origin of
the (S, δ) plane, with the variance of all trajectories given by
〈δ2(S)〉 = S. Two sample trajectories are shown in Figure 1.
Typically, the trajectories jitter more and deviate farther from
δ = 0 at larger S.

It is assumed that at redshift z and on scale M, regions with an
average density above a certain threshold value δc will collapse
into halos, while regions with an average density below the

threshold would remain uncollapsed. The galaxies form inside
sufficiently massive halos. In some models, δc is only a function
of redshift; more generally, it is a function of both redshift and
mass scale. The formation of a halo corresponds to the trajectory
up-crossing a barrier δc(M, z) in the S–δ plane. The excursion
set theory was developed to compute the probabilities for such
crossing and gives the mass distribution of the corresponding
halos.

An important issue that must be addressed is the “cloud-in-
cloud” problem. For a given central point, the critical threshold
could be exceeded multiple times, corresponding to possible
halos on different mass scales. In the excursion set theory, one
determines the largest smoothing scale M (smallest S) at which
a trajectory first up-crosses the halo barrier at δc and identify
it as the halo at that redshift, while smaller-scale crossings are
ignored. Physically, it is reasonable to think that the smaller-
scale upcrossing corresponds to a small halo that formed earlier
and merged into the larger halo.

The probability of the barrier crossing can be computed
by solving a diffusion equation with the appropriate boundary
conditions and the first crossing probability can be calculated
with an absorbing barrier. For a constant density barrier and
a starting point of (δ0, S0), the differential probability of first-
crossing of the barrier δc at S, known as the “first-crossing
distribution,” can be written as

f (S|δ0, S0)dS = δc − δ0√
2π (S − S0)3/2

exp
[
− (δc − δ0)2

2(S − S0)

]
dS

(1)

and around the whole universe, the mass function of the
virialized halos is obtained by setting S0 = 0 and δ0 = 0,
which is

dn

d ln M
= ρ̄m,0f (S)

∣∣∣∣
dS

dM

∣∣∣∣ . (2)

Besides the halo mass function, the excursion set theory can
also be used to model the halo formation and growth (Bond
et al. 1991; Lacey & Cole 1993) and halo clustering properties
(Mo & White 1996). Apart from the virialized halos, it could
be applied to various structures in the universe, such as the
voids in the galaxy distribution (Sheth & van de Weygaert 2004;
Paranjape et al. 2012a; Furlanetto & Piran 2006; D’Aloisio &
Furlanetto 2007) and the ionized bubbles during the early stages
of reionization (Furlanetto et al. 2004). It has also been extended
to the case of moving barriers (Sheth & Tormen 2002; Zhang &
Hui 2006). Strictly speaking, the probabilities given above are
calculated for uncorrelated steps, which is correct for the k-space
tophat filter but not for the real-space tophat filter. An excursion
set model with correlated steps has also been developed (Pan
et al. 2008; Paranjape et al. 2012b; Paranjape & Sheth 2012;
Musso & Sheth 2012; Farahi & Benson 2013; Musso & Sheth
2013), but below we will still use the uncorrelated model for its
simplicity.

2.2. The Bubble Model

In the excursion set model of ionized bubbles during reioniza-
tion, i.e., the “bubble model,” a region is considered ionized if it
could emit sufficient ionizing photons to ionize all of the hydro-
gen atoms in the region (Furlanetto et al. 2004). Assuming that
the number of the ionizing photons emitted is proportional to
the total collapse fraction of the region, the ionization condition
can be written as

fcoll ! ξ−1, (3)
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at some larger smoothing scale R′ > R. It seems natural that this larger volume should

collapse to form a virialized object, overwhelming the more diffuse patches within it. Clearly,

the sense of including this effect is to increase the fraction of mass in collapsed objects and

mitigate the factor of two discrepancy in the Press-Schechter formulas. In the literature, the

issue of regions below threshold on a particular scale, but above threshold on a larger scale

is referred to as the “cloud-in-cloud” problem. The cloud-in-cloud problem is closely tied to

the Press-Schechter factor of two as I discuss below.

To solve the cloud-in-cloud problem, it is necessary to compute the largest value of the

smoothing scale for which the density threshold is exceeded. This was done in a formal way

by Bond et al. [18] (see also Refs. [30, 31, 32]) and I follow their approach quite closely. The

development of Bond et al. in turn follows closely the elegant review of stochastic processes

by Chandrasekhar [23], and makes use of results from both Ref. [24] and Ref. [33].

In what follows, I consider the density contrast field evaluated at some early time far

before any scales of interest have approached the nonlinear regime, but extrapolated to

the present day using linear perturbation theory. In this way, the density contrast field

does not need to obey the physical constraint δ ≥ −1 because this is merely the linear

extrapolation of a density contrast of much smaller magnitude. In addition, all coordinates

are Lagrangian coordinates defined at the same early time so that the position of each mass

element is independent of time. The excursion set theory is, at its foundation, a set of

rules for assigning mass elements to virialized objects of various sizes. Where needed, I

will introduce the necessary conversions that map the initial Lagrangian sizes of overdense

and underdense regions onto Eulerian coordinates, thereby accounting for the contraction

or expansion of such regions respectively.

Consider again evaluating the field δ("x; R) at various values of the smoothing scale R, at

a single point "x. For now, I will suppress the argument "x and consider δ(R) as a function of

smoothing scale at a single point in space. For very large R, σ(R) # δc so the probability

that the region lies above the boundary δc is vanishingly small. With decreasing R, the

standard deviation becomes larger and δ(R) will eventually reach δc at the first up-crossing

of the boundary. The problem is to compute the probability that the first up-crossing of

the barrier at δc occurs on a scale R. For simplicity in what follows, let S ≡ σ2(R) and

let the value of S serve to denote the smoothing scale by exploiting the fact that S is a

monotonically decreasing function of R. I will then refer to the density contrast on that

12

scale as δ(S). Throughout this discussion, it is important to remember that increasing

S corresponds to decreasing R. The problem is to compute the probability that the first

up-crossing through the barrier occurs between a value S and S + dS.

Consider starting at a large smoothing scale, or small S = S1, where δ(S1) ≡ δ1 < δc.

For a given change in the filtering scale ∆S, there is some distribution for the probability of

reaching δ2 after an increment ∆S = S2 − S1 > 0. In general, this probability distribution

may depend not only on the size of the step ∆S, but the value of the density field on other

scales. If the probability distribution for δ2 after an increment ∆S depends upon other points

on the curve δ(S), solving for the probability distribution of δ at a given S is nontrivial. An

important special case is when the smoothing window used to define δ(S) is a k-space tophat

as in Eqs. (10)-(11). In that case, increasing the filter scale corresponds to adding a set of

independent Fourier modes to the smoothed density. These modes have not played a role in

determining δ(S) at other smoothing scales. In this special case, the transition probability

for a change in density ∆δ associated with a change in filtering scale ∆S is Gaussian with

zero mean and variance S2 − S1 = ∆S, independent of the starting point δ1(S1).

Following Bond et al. [18], it is common to refer to a sequence of δ(Si) given by many

subsequent increases of the smoothing scale by increments ∆Si as a trajectory for δ(S). In

the case of k-space tophat filtering of the density field, each trajectory of δ(S) executes a

Brownian random walk. Three examples of such uncorrelated random walks are shown in

Fig. 2. Notice that trajectories pierce the “barrier” at δc many times and drop below δc

between subsequent up-crossings. The aim of the excursion set approach is to solve the

cloud-in-cloud problem by determining the largest smoothing scale R or M , or equivalently

the smallest value of the variance S, at which a trajectory penetrates the barrier at δc.

In the case of k-space tophat filtering, the probability of a transition from δ1 to δ2 =

δ1 + ∆δ is

Π(δ2, S2) dδ2 = Ψ(∆δ; ∆S) d(∆δ), (19)

where

Ψ(∆δ; ∆S) d(∆δ) =
1√

2π∆S
exp

(

− (∆δ)2

2(∆S)2

)

d(∆δ) (20)

is the Gaussian transition probability. Taking S1 = 0, S2 the smoothing scale of interest,

and finding the probability of δ2 ≥ δc returns the Press-Schechter probability for being in a

collapsed object. The fact that some regions will exceed δc for a smaller change in S and
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Fig. 1.— Slices from our high resolution RadHydro simulation for a model of reionization that occurs ”late” with a midpoint of z = 8
and is finished by z ≈ 6.9. The dimensions are 100 Mpc/h x 100 Mpc/h with a thickness of ∼100 kpc/h comoving. Left: The density
field, ρ(x)/ρ̄. Right: The reionization-redshift field, zRE(x). Large-scale, overdense regions near sources are generally ionized earlier than
large-scale, underdense regions far from sources.

ondary anisotropies to great precision, where contribu-
tions to kSZ power from EOR are the largest. The South
Pole Telescope (SPT11; Zahn et al. 2012) placed a model
dependent upper limit on the duration of reionization
from their multifrequency measurements of the high !
power spectrum, and future results from the Atacama
Cosmology Telescope (ACT12) are expected to place sim-
ilar constraints. The next generation high resolution
CMB experiments ACT with polarization (ACT-pol) and
South Pole Telescope with polarization (SPT-pol) will
precisely measurement the secondary anisotropies of the
CMB in both temperature and polarization, which will
provide tighter constraints on EoR.
For the EoR experiments listed above and future ones,

the amount of understanding gained on these first ioniz-
ing sources and the initial stages of galaxy evolution will
depend upon the accuracy of the theoretical models for
EoR. The main challenge in EoR theory is providing an
accurate model of the IGM, the sources and the sinks of
ionizing photons, while having the a large enough vol-
ume > 1(Gpc/h)3 to statistically sample the HI regions
and construct mock observations on the angular scales
required by the current and future EoR experiments.
There are two standard approaches to model EoR,

radiative transfer simulations with various imple-
mentations for hydrodynamics and gas physics (e.g.
Gnedin & Abel 2001; Ciardi et al. 2001; Maselli et al.
2003; Alvarez et al. 2006; Mellema et al. 2006;
Iliev et al. 2006; Trac & Cen 2007; McQuinn et al.
2007; Trac et al. 2008; Aubert & Teyssier 2008;
Altay et al. 2008; Croft & Altay 2008; Finlator et al.
2009; Petkova & Springel 2009) and semi-analytic
models (e.g. Furlanetto et al. 2004; Zahn et al. 2005,
2007; Mesinger & Furlanetto 2007; Geil & Wyithe

11 pole.uchicago.edu
12 www.princeton.edu/act

2008; Alvarez et al. 2009; Thomas et al. 2009;
Choudhury et al. 2009; Santos et al. 2010;
Mesinger et al. 2011). In these semi-analytic mod-
els a region is fully ionized if the simple relation,
ζFcoll ≥ 1 is satisfied. Here ζ is an efficiency parameter
and Fcoll is the collapse fraction, which is calculated
via the excursion set formalism (Bond et al. 1991), or
applied to three dimensional realization of a density field
(e.g. Zahn et al. 2005). Semi-analytic models capture
the generic properties of EoR, but in order to capture
the complex non-linear, and non-Gaussian nature of
EoR radiative transfer simulations are required.
The advantages of the current full hydrodynamic, high

resolution simulations with radiative transfer (imple-
mented either in post processing or during the sim-
ulation) is that they probe the relevant scales to re-
solve sources of ionizing photons and their sinks, then
trace these photons through an inhomogeneous IGM
(Trac & Gnedin 2011). However, full hydrodynamic sim-
ulations with radiative transfer on large enough scales
to capture a representative sample of ionizing sources
and with enough small scale resolution to also capture
all the physics of reionization are currently not possi-
ble due to the overwhelming computational demands of
such calculations. Thus, all of the simulations to date
have been restricted to smaller box-sizes. Recent work
by Zahn et al. (2011) ran several convergence tests be-
tween these two types of EoR models. For all the models
in their study, they found that the results from the mod-
els are within tens of percent of each other. Although in
these comparisons the parameters of semi-analytic mod-
els were adjusted to match the ionization fractions of the
simulations at the redshifts of interest.
In this paper, we present a substantially more accu-

rate semi-analytical model that is statistically informed
by simulations with radiative transfer and hydrodynam-
ics. The implementation of this model is fast, versatile
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at some larger smoothing scale R′ > R. It seems natural that this larger volume should

collapse to form a virialized object, overwhelming the more diffuse patches within it. Clearly,

the sense of including this effect is to increase the fraction of mass in collapsed objects and

mitigate the factor of two discrepancy in the Press-Schechter formulas. In the literature, the

issue of regions below threshold on a particular scale, but above threshold on a larger scale

is referred to as the “cloud-in-cloud” problem. The cloud-in-cloud problem is closely tied to

the Press-Schechter factor of two as I discuss below.

To solve the cloud-in-cloud problem, it is necessary to compute the largest value of the

smoothing scale for which the density threshold is exceeded. This was done in a formal way

by Bond et al. [18] (see also Refs. [30, 31, 32]) and I follow their approach quite closely. The

development of Bond et al. in turn follows closely the elegant review of stochastic processes

by Chandrasekhar [23], and makes use of results from both Ref. [24] and Ref. [33].

In what follows, I consider the density contrast field evaluated at some early time far

before any scales of interest have approached the nonlinear regime, but extrapolated to

the present day using linear perturbation theory. In this way, the density contrast field

does not need to obey the physical constraint δ ≥ −1 because this is merely the linear

extrapolation of a density contrast of much smaller magnitude. In addition, all coordinates

are Lagrangian coordinates defined at the same early time so that the position of each mass

element is independent of time. The excursion set theory is, at its foundation, a set of

rules for assigning mass elements to virialized objects of various sizes. Where needed, I

will introduce the necessary conversions that map the initial Lagrangian sizes of overdense

and underdense regions onto Eulerian coordinates, thereby accounting for the contraction

or expansion of such regions respectively.

Consider again evaluating the field δ("x; R) at various values of the smoothing scale R, at

a single point "x. For now, I will suppress the argument "x and consider δ(R) as a function of

smoothing scale at a single point in space. For very large R, σ(R) # δc so the probability

that the region lies above the boundary δc is vanishingly small. With decreasing R, the

standard deviation becomes larger and δ(R) will eventually reach δc at the first up-crossing

of the boundary. The problem is to compute the probability that the first up-crossing of

the barrier at δc occurs on a scale R. For simplicity in what follows, let S ≡ σ2(R) and

let the value of S serve to denote the smoothing scale by exploiting the fact that S is a

monotonically decreasing function of R. I will then refer to the density contrast on that
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II. NOTATION AND CONVENTIONS

In the following, I consider fluctuations in the density field ρ("x) described by the density

contrast δ("x) ≡ [ρ("x) − ρM]/ρM, where ρM is the mean mass density in the universe and "x

is a comoving spatial coordinate. In the standard paradigm, the universe is endowed with

primordial density fluctuations during an epoch of cosmological inflation and the primordial

density contrast is a statistically homogeneous and isotropic Gaussian random field. This

means that the joint probability distribution of the density contrast at a set of points in

space is given by a multivariate Gaussian distribution. Homogeneity requires that the mean

〈δ("x)〉, of the distribution and the two-point function 〈δ("x1)δ("x2)〉 ≡ ξ("x1, "x2) be invariant

under translations. The two-point function is then a function only of the separation vector

between two points, ξ("x1, "x2) = ξ("x1 − "x2). Isotropy requires that ξ("x) is invariant under

rotations as well, so the two-point correlation function is only a function of the distance

between two points, ξ("x1, "x2) = ξ(|"x1 − "x2|).

The Fourier transform of the density contrast is given by the convention

δ("k) =
∫

d3x δ("x)ei!k·!x (1)

with the inverse transform

δ("x) =
1

(2π)3

∫

d3k δ("k)e−i!k·!x. (2)

Notice that the δ("k) have dimensions of volume and that for a real-valued field δ("x), the

Fourier coefficients obey the relation δ(−"k) = δ∗("k). We have implicitly assumed that there

is some very large cut-off scale L ≡ V 1/3 that renders the integral
∫

|δ("x)|d3x finite and that

this scale is much larger than any other scale of interest so that it plays no meaningful role.

Using these conventions, one can compute the two-point function ξ("r) ≡ 〈δ("x)δ("x + "r)〉 in

terms of the Fourier coefficients, where the average is taken over all space. The two-point

function is a function only of the amplitude of "r due to isotropy, and the result is

ξ(r) =
1

2π2

∫

k3V −1|δ(k)|2 sin(kr)

kr
d ln k. (3)

The correlation function is the Fourier transform of the power spectrum

P (k) ≡ V −1〈|δ(k)|2〉, (4)
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Figure 1. Two random walk trajectories in the excursion set theory. Here,
S = σ 2(M) denotes the variance of δM, which is the density fluctuation
smoothed on a mass scale M. All trajectories originate from (S, δ) = (0, 0).
The horizontal line represents a flat barrier, motivated by spherical collapse.
(A color version of this figure is available in the online journal.)

(Komatsu et al. 2011), but the results are not sensitive to these
parameters.

2. A BRIEF REVIEW OF THE EXCURSION SET THEORY
AND THE BUBBLE MODEL

2.1. The Excursion Set Model

Our island model is based on the excursion set theory. Here,
we give a brief review of the excursion set approach, especially
its application to the reionization process, i.e., the bubble model.
For a more comprehensive review of the excursion set theory
and its extensions and applications, we refer interested readers
to Zentner (2007) and references therein.

In what follows, we consider the density contrast field
evaluated at some early time but extrapolated to the present
day using linear perturbation theory. Considering a point x in
space, the density contrast δ(x) around it depends on the smooth
mass scale M under consideration. The variance of the density
fluctuations on a scale M, S = σ 2(M), monotonically decreases
with increasing M in our universe, so we can use S to represent
the scale M. Starting at M = ∞, i.e., S = 0, we move to
smaller and smaller scales surrounding the point of interest and
compute the smoothed density field as we go along. If we use a
k-space tophat window function to smooth the density field, at
each scale k a set of independent Fourier modes are added and
the trajectory of δ can be described by a random walk where
each step is independent, forming random trajectories on the
S–δ plane. Each of these trajectories starts from the origin of
the (S, δ) plane, with the variance of all trajectories given by
〈δ2(S)〉 = S. Two sample trajectories are shown in Figure 1.
Typically, the trajectories jitter more and deviate farther from
δ = 0 at larger S.

It is assumed that at redshift z and on scale M, regions with an
average density above a certain threshold value δc will collapse
into halos, while regions with an average density below the

threshold would remain uncollapsed. The galaxies form inside
sufficiently massive halos. In some models, δc is only a function
of redshift; more generally, it is a function of both redshift and
mass scale. The formation of a halo corresponds to the trajectory
up-crossing a barrier δc(M, z) in the S–δ plane. The excursion
set theory was developed to compute the probabilities for such
crossing and gives the mass distribution of the corresponding
halos.

An important issue that must be addressed is the “cloud-in-
cloud” problem. For a given central point, the critical threshold
could be exceeded multiple times, corresponding to possible
halos on different mass scales. In the excursion set theory, one
determines the largest smoothing scale M (smallest S) at which
a trajectory first up-crosses the halo barrier at δc and identify
it as the halo at that redshift, while smaller-scale crossings are
ignored. Physically, it is reasonable to think that the smaller-
scale upcrossing corresponds to a small halo that formed earlier
and merged into the larger halo.

The probability of the barrier crossing can be computed
by solving a diffusion equation with the appropriate boundary
conditions and the first crossing probability can be calculated
with an absorbing barrier. For a constant density barrier and
a starting point of (δ0, S0), the differential probability of first-
crossing of the barrier δc at S, known as the “first-crossing
distribution,” can be written as

f (S|δ0, S0)dS = δc − δ0√
2π (S − S0)3/2

exp
[
− (δc − δ0)2

2(S − S0)

]
dS

(1)

and around the whole universe, the mass function of the
virialized halos is obtained by setting S0 = 0 and δ0 = 0,
which is

dn

d ln M
= ρ̄m,0f (S)

∣∣∣∣
dS

dM

∣∣∣∣ . (2)

Besides the halo mass function, the excursion set theory can
also be used to model the halo formation and growth (Bond
et al. 1991; Lacey & Cole 1993) and halo clustering properties
(Mo & White 1996). Apart from the virialized halos, it could
be applied to various structures in the universe, such as the
voids in the galaxy distribution (Sheth & van de Weygaert 2004;
Paranjape et al. 2012a; Furlanetto & Piran 2006; D’Aloisio &
Furlanetto 2007) and the ionized bubbles during the early stages
of reionization (Furlanetto et al. 2004). It has also been extended
to the case of moving barriers (Sheth & Tormen 2002; Zhang &
Hui 2006). Strictly speaking, the probabilities given above are
calculated for uncorrelated steps, which is correct for the k-space
tophat filter but not for the real-space tophat filter. An excursion
set model with correlated steps has also been developed (Pan
et al. 2008; Paranjape et al. 2012b; Paranjape & Sheth 2012;
Musso & Sheth 2012; Farahi & Benson 2013; Musso & Sheth
2013), but below we will still use the uncorrelated model for its
simplicity.

2.2. The Bubble Model

In the excursion set model of ionized bubbles during reioniza-
tion, i.e., the “bubble model,” a region is considered ionized if it
could emit sufficient ionizing photons to ionize all of the hydro-
gen atoms in the region (Furlanetto et al. 2004). Assuming that
the number of the ionizing photons emitted is proportional to
the total collapse fraction of the region, the ionization condition
can be written as

fcoll ! ξ−1, (3)
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at some larger smoothing scale R′ > R. It seems natural that this larger volume should

collapse to form a virialized object, overwhelming the more diffuse patches within it. Clearly,

the sense of including this effect is to increase the fraction of mass in collapsed objects and

mitigate the factor of two discrepancy in the Press-Schechter formulas. In the literature, the

issue of regions below threshold on a particular scale, but above threshold on a larger scale

is referred to as the “cloud-in-cloud” problem. The cloud-in-cloud problem is closely tied to

the Press-Schechter factor of two as I discuss below.

To solve the cloud-in-cloud problem, it is necessary to compute the largest value of the

smoothing scale for which the density threshold is exceeded. This was done in a formal way

by Bond et al. [18] (see also Refs. [30, 31, 32]) and I follow their approach quite closely. The

development of Bond et al. in turn follows closely the elegant review of stochastic processes

by Chandrasekhar [23], and makes use of results from both Ref. [24] and Ref. [33].

In what follows, I consider the density contrast field evaluated at some early time far

before any scales of interest have approached the nonlinear regime, but extrapolated to

the present day using linear perturbation theory. In this way, the density contrast field

does not need to obey the physical constraint δ ≥ −1 because this is merely the linear

extrapolation of a density contrast of much smaller magnitude. In addition, all coordinates

are Lagrangian coordinates defined at the same early time so that the position of each mass

element is independent of time. The excursion set theory is, at its foundation, a set of

rules for assigning mass elements to virialized objects of various sizes. Where needed, I

will introduce the necessary conversions that map the initial Lagrangian sizes of overdense

and underdense regions onto Eulerian coordinates, thereby accounting for the contraction

or expansion of such regions respectively.

Consider again evaluating the field δ("x; R) at various values of the smoothing scale R, at

a single point "x. For now, I will suppress the argument "x and consider δ(R) as a function of

smoothing scale at a single point in space. For very large R, σ(R) # δc so the probability

that the region lies above the boundary δc is vanishingly small. With decreasing R, the

standard deviation becomes larger and δ(R) will eventually reach δc at the first up-crossing

of the boundary. The problem is to compute the probability that the first up-crossing of

the barrier at δc occurs on a scale R. For simplicity in what follows, let S ≡ σ2(R) and

let the value of S serve to denote the smoothing scale by exploiting the fact that S is a

monotonically decreasing function of R. I will then refer to the density contrast on that
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Fig. 1.— Slices from our high resolution RadHydro simulation for a model of reionization that occurs ”late” with a midpoint of z = 8
and is finished by z ≈ 6.9. The dimensions are 100 Mpc/h x 100 Mpc/h with a thickness of ∼100 kpc/h comoving. Left: The density
field, ρ(x)/ρ̄. Right: The reionization-redshift field, zRE(x). Large-scale, overdense regions near sources are generally ionized earlier than
large-scale, underdense regions far from sources.

ondary anisotropies to great precision, where contribu-
tions to kSZ power from EOR are the largest. The South
Pole Telescope (SPT11; Zahn et al. 2012) placed a model
dependent upper limit on the duration of reionization
from their multifrequency measurements of the high !
power spectrum, and future results from the Atacama
Cosmology Telescope (ACT12) are expected to place sim-
ilar constraints. The next generation high resolution
CMB experiments ACT with polarization (ACT-pol) and
South Pole Telescope with polarization (SPT-pol) will
precisely measurement the secondary anisotropies of the
CMB in both temperature and polarization, which will
provide tighter constraints on EoR.
For the EoR experiments listed above and future ones,

the amount of understanding gained on these first ioniz-
ing sources and the initial stages of galaxy evolution will
depend upon the accuracy of the theoretical models for
EoR. The main challenge in EoR theory is providing an
accurate model of the IGM, the sources and the sinks of
ionizing photons, while having the a large enough vol-
ume > 1(Gpc/h)3 to statistically sample the HI regions
and construct mock observations on the angular scales
required by the current and future EoR experiments.
There are two standard approaches to model EoR,

radiative transfer simulations with various imple-
mentations for hydrodynamics and gas physics (e.g.
Gnedin & Abel 2001; Ciardi et al. 2001; Maselli et al.
2003; Alvarez et al. 2006; Mellema et al. 2006;
Iliev et al. 2006; Trac & Cen 2007; McQuinn et al.
2007; Trac et al. 2008; Aubert & Teyssier 2008;
Altay et al. 2008; Croft & Altay 2008; Finlator et al.
2009; Petkova & Springel 2009) and semi-analytic
models (e.g. Furlanetto et al. 2004; Zahn et al. 2005,
2007; Mesinger & Furlanetto 2007; Geil & Wyithe
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2008; Alvarez et al. 2009; Thomas et al. 2009;
Choudhury et al. 2009; Santos et al. 2010;
Mesinger et al. 2011). In these semi-analytic mod-
els a region is fully ionized if the simple relation,
ζFcoll ≥ 1 is satisfied. Here ζ is an efficiency parameter
and Fcoll is the collapse fraction, which is calculated
via the excursion set formalism (Bond et al. 1991), or
applied to three dimensional realization of a density field
(e.g. Zahn et al. 2005). Semi-analytic models capture
the generic properties of EoR, but in order to capture
the complex non-linear, and non-Gaussian nature of
EoR radiative transfer simulations are required.
The advantages of the current full hydrodynamic, high

resolution simulations with radiative transfer (imple-
mented either in post processing or during the sim-
ulation) is that they probe the relevant scales to re-
solve sources of ionizing photons and their sinks, then
trace these photons through an inhomogeneous IGM
(Trac & Gnedin 2011). However, full hydrodynamic sim-
ulations with radiative transfer on large enough scales
to capture a representative sample of ionizing sources
and with enough small scale resolution to also capture
all the physics of reionization are currently not possi-
ble due to the overwhelming computational demands of
such calculations. Thus, all of the simulations to date
have been restricted to smaller box-sizes. Recent work
by Zahn et al. (2011) ran several convergence tests be-
tween these two types of EoR models. For all the models
in their study, they found that the results from the mod-
els are within tens of percent of each other. Although in
these comparisons the parameters of semi-analytic mod-
els were adjusted to match the ionization fractions of the
simulations at the redshifts of interest.
In this paper, we present a substantially more accu-

rate semi-analytical model that is statistically informed
by simulations with radiative transfer and hydrodynam-
ics. The implementation of this model is fast, versatile

(Battaglia et al. 2013 ApJ, 776, 81)

Why excursion set theory?

à Full RT-simulations are computationally expensive

à The reionization field follows the density field on large scales



and nrec the typical number of times a hydrogen atom has
recombined. These parameters all depend on the uncertain
source properties and can be functions of time; we will con-
sider several possible values for ! below.

Because the mass function is steep at high redshifts, the re-
sulting H ii regions are quite small (see the discussion of Fig. 4
below). This conflicts with even the most basic pictures from
simulations (Sokasian et al. 2003a; Ciardi et al. 2003). ‘‘Typi-
cal’’ ionized regions in simulations extend to several comoving
megaparsecs in radius even early in overlap, many times larger
than Strömgren spheres around individual galaxies. The reason
is simply that the Strömgren spheres of nearby protogalaxies
add, so that biased regions tend to host surprisingly large ion-
ized regions (Barkana & Loeb 2004). For example, Figure 6 of
Sokasian et al. (2003a) shows that H ii regions tend to grow
around the largest clusters of sources, in this case primarily
along filaments. In fact, the radius of the H ii regions quickly
exceeds the correlation length of galaxies, so it is difficult to see
how to construct a model for the bubbles based on ‘‘local’’
galaxy properties.

Therefore, in order to describe the neutral fraction field, xH,
we need to take into account large-scale fluctuations in the
density field. Here we describe a simple way to do so. We again
begin with the Ansatz of equation (1) and ask whether an iso-
lated region of mass m is fully ionized or not. Because it is
isolated, the region must contain enough mass in luminous
sources to ionize all of its hydrogen atoms; thus we can impose
a condition on the collapse fraction:

fcoll ! fx " !#1: ð2Þ

In the extended Press-Schechter model (Bond et al. 1991;
Lacey & Cole 1993), the collapse fraction is a deterministic
function of the mean linear overdensity "m of our region:

fcoll ¼ erfc
"c(z)# "mffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2½#2
min # #2(m)(

p
" #

; ð3Þ

where #2(m) is the variance of density fluctuations on the scale
m, #2

min ¼ #2(mmin), "c(z) is the critical density for collapse,
and mmin is the minimum mass of an ionizing source.7 Unless
otherwise specified, we will take mmin to be the mass corre-
sponding to a virial temperature of 104 K, at which atomic
hydrogen line cooling becomes efficient. Note that this ex-
pression assumes that the mass fluctuations are Gaussian on the
scale m; the formula thus begins to break down when we
consider mass scales close to the typical size of collapsed
objects. Armed with this result, we can rewrite condition (2) as
a constraint on the density:

"m ! "x(m; z) " "c(z)#
ffiffiffi
2

p
K(!)½#2

min # #2(m)(1=2; ð4Þ

where K(!) ¼ erf #1(1# !#1). We see that regions with suffi-
ciently large overdensities will be able to ‘‘self-ionize.’’

In order to compute the size distribution of ionized regions
wemust overcome two additional, but related, difficulties. First,
we apparently must settle on an appropriate smoothing scale m.
Second, we must take into account ionizing photons from

galaxies outside of the region under consideration. In other
words, an underdense voidm1 may be ionized by a neighboring
cluster of sources in an overdense region m2 provided that the
cluster has enough ‘‘extra’’ ionizing photons. But notice that
we can solve the latter problem by changing our smoothing
scale to m1 þ m2: then the net collapse fraction in this region
would be large enough to ‘‘self-ionize.’’

This suggests that we wish to assign a point in space to an
ionized region of mass m if and only if the scale m is the
largest scale for which condition (4) is fulfilled. If this pro-
cedure can be done self-consistently, we will not need to ar-
bitrarily choose a smoothing scale. Our problem is analogous
to constructing the halo mass function through the excursion
set formalism (Bond et al. 1991): starting at m ¼ 1, we move
to smaller scales surrounding the point of interest and compute
the smoothed density field as we go along. Once "m ¼ "x(m; z),
we have identified a region with enough sources to ionize
itself, and we assign these points to objects of the appropri-
ate mass. To obtain the mass function, we need to find the
distribution of first up-crossings above the curve described
by "x. (We are concerned only with the first-crossing distri-
bution because those trajectories that later wander below the
barrier correspond to regions ionized by sources in neighboring
volumes.) Again, we need not choose a smoothing scale; each
point is assigned to an object of mass m based on its own
behavior.

The solid lines in Figure 1 show the barrier "x(m; z) for
several redshifts as a function of #2(m). In each case the curves
end at #2(!mmin); this is the minimum size of an H ii region in
our formalism. The figure shows an important difference be-
tween our problem and the excursion set formalism applied to
the halo mass function. In the latter case, the barrier "c(z) is
independent of mass. Clearly this would not be a good approx-
imation in our case. Unfortunately, there is no general method
for constructing the first-crossing distribution above a barrier
of arbitrary shape (but see Sheth & Tormen [2002] for an

7 Note that in eq. (3) the growth of structure is encoded in the time evo-
lution of "c(z), with #2(m) constant in time. We adopt this convention in the
rest of the paper.

Fig. 1.—Density threshold "x(#2; z) at several different redshifts, assuming
! ¼ 40. The curves are for z ¼ 20, 16, and 12, from top to bottom. Within
each set, the solid curve is the true "x(m; z) and the dashed line is the fit
B(m; z).
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The Excursion Set Approach for ionized bubbles
– The bubble model of reionization (Furlanetto et al. 2004)

and nrec the typical number of times a hydrogen atom has
recombined. These parameters all depend on the uncertain
source properties and can be functions of time; we will con-
sider several possible values for ! below.

Because the mass function is steep at high redshifts, the re-
sulting H ii regions are quite small (see the discussion of Fig. 4
below). This conflicts with even the most basic pictures from
simulations (Sokasian et al. 2003a; Ciardi et al. 2003). ‘‘Typi-
cal’’ ionized regions in simulations extend to several comoving
megaparsecs in radius even early in overlap, many times larger
than Strömgren spheres around individual galaxies. The reason
is simply that the Strömgren spheres of nearby protogalaxies
add, so that biased regions tend to host surprisingly large ion-
ized regions (Barkana & Loeb 2004). For example, Figure 6 of
Sokasian et al. (2003a) shows that H ii regions tend to grow
around the largest clusters of sources, in this case primarily
along filaments. In fact, the radius of the H ii regions quickly
exceeds the correlation length of galaxies, so it is difficult to see
how to construct a model for the bubbles based on ‘‘local’’
galaxy properties.

Therefore, in order to describe the neutral fraction field, xH,
we need to take into account large-scale fluctuations in the
density field. Here we describe a simple way to do so. We again
begin with the Ansatz of equation (1) and ask whether an iso-
lated region of mass m is fully ionized or not. Because it is
isolated, the region must contain enough mass in luminous
sources to ionize all of its hydrogen atoms; thus we can impose
a condition on the collapse fraction:

fcoll ! fx " !#1: ð2Þ

In the extended Press-Schechter model (Bond et al. 1991;
Lacey & Cole 1993), the collapse fraction is a deterministic
function of the mean linear overdensity "m of our region:

fcoll ¼ erfc
"c(z)# "mffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2½#2
min # #2(m)(

p
" #

; ð3Þ

where #2(m) is the variance of density fluctuations on the scale
m, #2

min ¼ #2(mmin), "c(z) is the critical density for collapse,
and mmin is the minimum mass of an ionizing source.7 Unless
otherwise specified, we will take mmin to be the mass corre-
sponding to a virial temperature of 104 K, at which atomic
hydrogen line cooling becomes efficient. Note that this ex-
pression assumes that the mass fluctuations are Gaussian on the
scale m; the formula thus begins to break down when we
consider mass scales close to the typical size of collapsed
objects. Armed with this result, we can rewrite condition (2) as
a constraint on the density:

"m ! "x(m; z) " "c(z)#
ffiffiffi
2

p
K(!)½#2

min # #2(m)(1=2; ð4Þ

where K(!) ¼ erf #1(1# !#1). We see that regions with suffi-
ciently large overdensities will be able to ‘‘self-ionize.’’

In order to compute the size distribution of ionized regions
wemust overcome two additional, but related, difficulties. First,
we apparently must settle on an appropriate smoothing scale m.
Second, we must take into account ionizing photons from

galaxies outside of the region under consideration. In other
words, an underdense voidm1 may be ionized by a neighboring
cluster of sources in an overdense region m2 provided that the
cluster has enough ‘‘extra’’ ionizing photons. But notice that
we can solve the latter problem by changing our smoothing
scale to m1 þ m2: then the net collapse fraction in this region
would be large enough to ‘‘self-ionize.’’

This suggests that we wish to assign a point in space to an
ionized region of mass m if and only if the scale m is the
largest scale for which condition (4) is fulfilled. If this pro-
cedure can be done self-consistently, we will not need to ar-
bitrarily choose a smoothing scale. Our problem is analogous
to constructing the halo mass function through the excursion
set formalism (Bond et al. 1991): starting at m ¼ 1, we move
to smaller scales surrounding the point of interest and compute
the smoothed density field as we go along. Once "m ¼ "x(m; z),
we have identified a region with enough sources to ionize
itself, and we assign these points to objects of the appropri-
ate mass. To obtain the mass function, we need to find the
distribution of first up-crossings above the curve described
by "x. (We are concerned only with the first-crossing distri-
bution because those trajectories that later wander below the
barrier correspond to regions ionized by sources in neighboring
volumes.) Again, we need not choose a smoothing scale; each
point is assigned to an object of mass m based on its own
behavior.

The solid lines in Figure 1 show the barrier "x(m; z) for
several redshifts as a function of #2(m). In each case the curves
end at #2(!mmin); this is the minimum size of an H ii region in
our formalism. The figure shows an important difference be-
tween our problem and the excursion set formalism applied to
the halo mass function. In the latter case, the barrier "c(z) is
independent of mass. Clearly this would not be a good approx-
imation in our case. Unfortunately, there is no general method
for constructing the first-crossing distribution above a barrier
of arbitrary shape (but see Sheth & Tormen [2002] for an

7 Note that in eq. (3) the growth of structure is encoded in the time evo-
lution of "c(z), with #2(m) constant in time. We adopt this convention in the
rest of the paper.

Fig. 1.—Density threshold "x(#2; z) at several different redshifts, assuming
! ¼ 40. The curves are for z ¼ 20, 16, and 12, from top to bottom. Within
each set, the solid curve is the true "x(m; z) and the dashed line is the fit
B(m; z).
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and nrec the typical number of times a hydrogen atom has
recombined. These parameters all depend on the uncertain
source properties and can be functions of time; we will con-
sider several possible values for ! below.

Because the mass function is steep at high redshifts, the re-
sulting H ii regions are quite small (see the discussion of Fig. 4
below). This conflicts with even the most basic pictures from
simulations (Sokasian et al. 2003a; Ciardi et al. 2003). ‘‘Typi-
cal’’ ionized regions in simulations extend to several comoving
megaparsecs in radius even early in overlap, many times larger
than Strömgren spheres around individual galaxies. The reason
is simply that the Strömgren spheres of nearby protogalaxies
add, so that biased regions tend to host surprisingly large ion-
ized regions (Barkana & Loeb 2004). For example, Figure 6 of
Sokasian et al. (2003a) shows that H ii regions tend to grow
around the largest clusters of sources, in this case primarily
along filaments. In fact, the radius of the H ii regions quickly
exceeds the correlation length of galaxies, so it is difficult to see
how to construct a model for the bubbles based on ‘‘local’’
galaxy properties.

Therefore, in order to describe the neutral fraction field, xH,
we need to take into account large-scale fluctuations in the
density field. Here we describe a simple way to do so. We again
begin with the Ansatz of equation (1) and ask whether an iso-
lated region of mass m is fully ionized or not. Because it is
isolated, the region must contain enough mass in luminous
sources to ionize all of its hydrogen atoms; thus we can impose
a condition on the collapse fraction:

fcoll ! fx " !#1: ð2Þ

In the extended Press-Schechter model (Bond et al. 1991;
Lacey & Cole 1993), the collapse fraction is a deterministic
function of the mean linear overdensity "m of our region:

fcoll ¼ erfc
"c(z)# "mffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2½#2
min # #2(m)(

p
" #

; ð3Þ

where #2(m) is the variance of density fluctuations on the scale
m, #2

min ¼ #2(mmin), "c(z) is the critical density for collapse,
and mmin is the minimum mass of an ionizing source.7 Unless
otherwise specified, we will take mmin to be the mass corre-
sponding to a virial temperature of 104 K, at which atomic
hydrogen line cooling becomes efficient. Note that this ex-
pression assumes that the mass fluctuations are Gaussian on the
scale m; the formula thus begins to break down when we
consider mass scales close to the typical size of collapsed
objects. Armed with this result, we can rewrite condition (2) as
a constraint on the density:

"m ! "x(m; z) " "c(z)#
ffiffiffi
2

p
K(!)½#2

min # #2(m)(1=2; ð4Þ

where K(!) ¼ erf #1(1# !#1). We see that regions with suffi-
ciently large overdensities will be able to ‘‘self-ionize.’’

In order to compute the size distribution of ionized regions
wemust overcome two additional, but related, difficulties. First,
we apparently must settle on an appropriate smoothing scale m.
Second, we must take into account ionizing photons from

galaxies outside of the region under consideration. In other
words, an underdense voidm1 may be ionized by a neighboring
cluster of sources in an overdense region m2 provided that the
cluster has enough ‘‘extra’’ ionizing photons. But notice that
we can solve the latter problem by changing our smoothing
scale to m1 þ m2: then the net collapse fraction in this region
would be large enough to ‘‘self-ionize.’’

This suggests that we wish to assign a point in space to an
ionized region of mass m if and only if the scale m is the
largest scale for which condition (4) is fulfilled. If this pro-
cedure can be done self-consistently, we will not need to ar-
bitrarily choose a smoothing scale. Our problem is analogous
to constructing the halo mass function through the excursion
set formalism (Bond et al. 1991): starting at m ¼ 1, we move
to smaller scales surrounding the point of interest and compute
the smoothed density field as we go along. Once "m ¼ "x(m; z),
we have identified a region with enough sources to ionize
itself, and we assign these points to objects of the appropri-
ate mass. To obtain the mass function, we need to find the
distribution of first up-crossings above the curve described
by "x. (We are concerned only with the first-crossing distri-
bution because those trajectories that later wander below the
barrier correspond to regions ionized by sources in neighboring
volumes.) Again, we need not choose a smoothing scale; each
point is assigned to an object of mass m based on its own
behavior.

The solid lines in Figure 1 show the barrier "x(m; z) for
several redshifts as a function of #2(m). In each case the curves
end at #2(!mmin); this is the minimum size of an H ii region in
our formalism. The figure shows an important difference be-
tween our problem and the excursion set formalism applied to
the halo mass function. In the latter case, the barrier "c(z) is
independent of mass. Clearly this would not be a good approx-
imation in our case. Unfortunately, there is no general method
for constructing the first-crossing distribution above a barrier
of arbitrary shape (but see Sheth & Tormen [2002] for an

7 Note that in eq. (3) the growth of structure is encoded in the time evo-
lution of "c(z), with #2(m) constant in time. We adopt this convention in the
rest of the paper.

Fig. 1.—Density threshold "x(#2; z) at several different redshifts, assuming
! ¼ 40. The curves are for z ¼ 20, 16, and 12, from top to bottom. Within
each set, the solid curve is the true "x(m; z) and the dashed line is the fit
B(m; z).
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and nrec the typical number of times a hydrogen atom has
recombined. These parameters all depend on the uncertain
source properties and can be functions of time; we will con-
sider several possible values for ! below.

Because the mass function is steep at high redshifts, the re-
sulting H ii regions are quite small (see the discussion of Fig. 4
below). This conflicts with even the most basic pictures from
simulations (Sokasian et al. 2003a; Ciardi et al. 2003). ‘‘Typi-
cal’’ ionized regions in simulations extend to several comoving
megaparsecs in radius even early in overlap, many times larger
than Strömgren spheres around individual galaxies. The reason
is simply that the Strömgren spheres of nearby protogalaxies
add, so that biased regions tend to host surprisingly large ion-
ized regions (Barkana & Loeb 2004). For example, Figure 6 of
Sokasian et al. (2003a) shows that H ii regions tend to grow
around the largest clusters of sources, in this case primarily
along filaments. In fact, the radius of the H ii regions quickly
exceeds the correlation length of galaxies, so it is difficult to see
how to construct a model for the bubbles based on ‘‘local’’
galaxy properties.

Therefore, in order to describe the neutral fraction field, xH,
we need to take into account large-scale fluctuations in the
density field. Here we describe a simple way to do so. We again
begin with the Ansatz of equation (1) and ask whether an iso-
lated region of mass m is fully ionized or not. Because it is
isolated, the region must contain enough mass in luminous
sources to ionize all of its hydrogen atoms; thus we can impose
a condition on the collapse fraction:

fcoll ! fx " !#1: ð2Þ

In the extended Press-Schechter model (Bond et al. 1991;
Lacey & Cole 1993), the collapse fraction is a deterministic
function of the mean linear overdensity "m of our region:

fcoll ¼ erfc
"c(z)# "mffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2½#2
min # #2(m)(

p
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; ð3Þ

where #2(m) is the variance of density fluctuations on the scale
m, #2

min ¼ #2(mmin), "c(z) is the critical density for collapse,
and mmin is the minimum mass of an ionizing source.7 Unless
otherwise specified, we will take mmin to be the mass corre-
sponding to a virial temperature of 104 K, at which atomic
hydrogen line cooling becomes efficient. Note that this ex-
pression assumes that the mass fluctuations are Gaussian on the
scale m; the formula thus begins to break down when we
consider mass scales close to the typical size of collapsed
objects. Armed with this result, we can rewrite condition (2) as
a constraint on the density:

"m ! "x(m; z) " "c(z)#
ffiffiffi
2

p
K(!)½#2

min # #2(m)(1=2; ð4Þ

where K(!) ¼ erf #1(1# !#1). We see that regions with suffi-
ciently large overdensities will be able to ‘‘self-ionize.’’

In order to compute the size distribution of ionized regions
wemust overcome two additional, but related, difficulties. First,
we apparently must settle on an appropriate smoothing scale m.
Second, we must take into account ionizing photons from

galaxies outside of the region under consideration. In other
words, an underdense voidm1 may be ionized by a neighboring
cluster of sources in an overdense region m2 provided that the
cluster has enough ‘‘extra’’ ionizing photons. But notice that
we can solve the latter problem by changing our smoothing
scale to m1 þ m2: then the net collapse fraction in this region
would be large enough to ‘‘self-ionize.’’

This suggests that we wish to assign a point in space to an
ionized region of mass m if and only if the scale m is the
largest scale for which condition (4) is fulfilled. If this pro-
cedure can be done self-consistently, we will not need to ar-
bitrarily choose a smoothing scale. Our problem is analogous
to constructing the halo mass function through the excursion
set formalism (Bond et al. 1991): starting at m ¼ 1, we move
to smaller scales surrounding the point of interest and compute
the smoothed density field as we go along. Once "m ¼ "x(m; z),
we have identified a region with enough sources to ionize
itself, and we assign these points to objects of the appropri-
ate mass. To obtain the mass function, we need to find the
distribution of first up-crossings above the curve described
by "x. (We are concerned only with the first-crossing distri-
bution because those trajectories that later wander below the
barrier correspond to regions ionized by sources in neighboring
volumes.) Again, we need not choose a smoothing scale; each
point is assigned to an object of mass m based on its own
behavior.

The solid lines in Figure 1 show the barrier "x(m; z) for
several redshifts as a function of #2(m). In each case the curves
end at #2(!mmin); this is the minimum size of an H ii region in
our formalism. The figure shows an important difference be-
tween our problem and the excursion set formalism applied to
the halo mass function. In the latter case, the barrier "c(z) is
independent of mass. Clearly this would not be a good approx-
imation in our case. Unfortunately, there is no general method
for constructing the first-crossing distribution above a barrier
of arbitrary shape (but see Sheth & Tormen [2002] for an

7 Note that in eq. (3) the growth of structure is encoded in the time evo-
lution of "c(z), with #

2(m) constant in time. We adopt this convention in the
rest of the paper.

Fig. 1.—Density threshold "x(#2; z) at several different redshifts, assuming
! ¼ 40. The curves are for z ¼ 20, 16, and 12, from top to bottom. Within
each set, the solid curve is the true "x(m; z) and the dashed line is the fit
B(m; z).
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The bubble barrier

• Relate the ionization field to the initial density field

• Ask whether an isolated region of mass M can be fully self-ionized.



Semi-numerical simulations based on the bubble model

• 21cmFAST (Mesinger et al.)

• simFAST21 (Santos et al.)

• Fialkov & Barkana

• photon-conserving SCRIPT

(Choudhury et al.)

4
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Figure 1. A graphical representation of a simulated 21 cm signal from z ⇠ 90 (during the Dark Ages) to the z ⇠ 7 (the
end of reionization in this particular simulation). The top panel shows the 21 cm brightness temperature contrast with the
CMB, displayed as a two-dimensional slice of a three-dimensional volume. Because the line-of-sight distance for the 21 cm line
is obtained via the redshift, the horizontal axis also doubles as a redshift/evolution axis (i.e., the top panel is a picture of a
light cone, which is what a real telescope would observe). The middle panel shows the predicted global signal of the 21 cm
line, where the spatial information in the vertical direction of the top panel has been averaged over to produce one average
brightness temperature per redshift. The bottom panel shows the power spectrum, expressed as �2(k) ⌘ k3P (k)/2⇡2, as
a function of redshift. This can be thought of as a measure of the variance of spatial fluctuations as a function of spatial
wavenumber k (see Equation 22), with the solid line showing k = 0.1Mpc�1 and the dotted line showing k = 0.5Mpc�1).
These simulations were generated from the 21cmFAST semi-analytic code (Mesinger et al. 2011), and are publicly available at
http://homepage.sns.it/mesinger/EOS.html as part of the Evolution of 21 cm Structure project (Mesinger et al. 2016).

The Dark Ages are of tremendous cosmological inter-
est. The epoch provides access to a huge number of
Fourier modes of the matter density fields (Loeb & Zal-
darriaga 2004). These fluctuations are graphically de-
picted in the red high redshift regions of the top panel
of Figure 1. They are a particularly clean probe of the
matter field since this is prior to the formation of the
first luminous sources, thus obviating the need for the
modelling of complicated astrophysics. The theoretical
modelling e↵ort is in fact even simpler than, say, that
needed for galaxy surveys, since at these high redshifts,
matter fluctuations are in the linear perturbative regime

even at very fine scales. This is important because the
spatial fluctuations exist to extremely small scales, as
they are not Silk damped and therefore persist down to
the Jeans scale (Tegmark & Zaldarriaga 2009). The re-
sult is a vast number of modes that can be in principle
be used to probe fundamental cosmology. The long lever
arm in scale, from the largest structures to the small-
est structures, enables constraints on the running of
the matter power spectrum’s spectral index (Mao et al.
2008). This would represent an incisive probe of the
inflationary paradigm. Future measurements may also
be able to detect features in the primordial power spec-

第一代星系
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It would be relatively easier for the upcoming instruments to probe the signal at the late 
reionization stages.

However, after percolation…

1. The isolated and spherical assumption for the ionized bubbles breaks down 

è the neutral islands are more isolated

2. The existence of an ionizing background

è the shape of barriers could be changed 

(the linear fit may not apply)



l Negative island barrier (“inside-out” reionization)

l Island mass scales are identified by first-down-crossings through the island barrier (but 

not the “never-up-crossing” distribution).

With the inclusion of an ionizing background, the condition of keeping from being ionized:

è The island barrier:

– 9 –

high density and hence high recombination rates, which keep them from being ionized. We shall

not discuss these small, highly dense HI systems in this paper, their number distribution can be

predicted with the usual halo model formalism (see Cooray & Sheth 2002 for a review). The neutral

islands during the late era of reionization are more likely isolated than the ionized bubbles, similar

to the voids at lower redshifts.

In the island model, we assume that most part of the Universe has been ionized, but the

reionization has not been completed. The condition for a region remains neutral is just the opposite

of the ionization condition, that is, the total number of ionizing photons is less than the number

required to ionize all hydrogen atoms in the region. At this stage, however, it is also important to

include the background ionizing photons which are produced outside the region. An island of mass

scale M at redshift z has to satisfy the following condition in order to remain neutral:

⇥fcoll(�M;M, z) +
�m

�b

NbackmH

MXH(1 + n̄rec)
< 1, (11)

where Nback is the number of background ionizing photons that are consumed by the island, and XH

is the mass fraction of the baryons in hydrogen. The first term on the L.H.S. is due to self-ionization,

while the second term is due to the ionizing background. Note that in the usual convention of the

bubble model, the number of recombination factor (1+ n̄rec)�1 is absorbed in the ⇥ parameter, and

to be consistent with these literatures here we follow this convention, but we should keep in mind

that if one changes n̄rec, the adopted ⇥ value should be changed accordingly.

Using Eq. (5), the condition (11) can be rewritten as a constraint on the overdensity of the

region:

�M < �I(M, z) ⇥ �c(z)�
⇤
2[Smax � S(M)] erfc�1 [K(M, z)] , (12)

where

K(M, z) = ⇥�1

�
1�Nback(1 + n̄rec)

�1 mH

M(�b/�m)XH

⇥
. (13)

Due to the contribution of the ionizing background photons, in the excursion set model the barrier

for the neutral islands is di⇥erent from the barrier used in the bubble model, as the ionizing

background would not be present when the bubbles are isolated. Below, we shall call a barrier with

only the self-ionization term the “bubble barrier”, denoted by �B(M, z), since it is used to compute

the probability of forming bubbles. Inclusion of the ionizing background would make the barrier

much more negative, and we shall call the full barrier the “island barrier”, denoted by �I(M, z).

As discussed in the last section, the bubble barrier lowers as the structure formation progresses.

Even if we simply compute the barrier as in the original bubble model, i.e. including only the

ionizing photons from collapsed halos within the region being considered, it could have negative

intercepts, i.e. �B(S = 0) < 0 (see e.g. the thin lines in Fig. 2). When bubble barrier passes

through the origin of the � � S plane, all regions with the mean density � = 0 are ionized, this

means that most of the Universe is ionized. It is also from this moment onward a global ionizing

background is gradually set up. We will define the redshift when this occurred as the “background

The contribution of 
background ionizing photons

The Island Model (Xu et al. 2014)



* Considering the effect of Lyman limit systems on the mean free path of ionizing 
photons, the comoving number density of background ionizing photons is

*With the MHR00 model for the volume-weighted density distribution of the IGM 
(Miralda-Escude et al. 2000),

the mean free path of ionizing photons can be written as
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resulting intensity of the ionizing background is unreasonably high. Here we give

a more realistic model for the ionizing background. Due to the existence of dense

clumps that have high recombination rate and limit the mean free path of the ionizing

background photons, an island does not see all the ionizing photons emitted by all

the sources, but only out to a distance of roughly the mean free path of the ionizing

photons. The comoving number density of background ionizing photons at redshift z

can be modeled as the integration of escaped ionizing photons that are emitted from

newly collapsed objects and survived to the distances between the sources and the

position under consideration:

n⇥(z) =

⌃

z
n̄H

����
dfcoll(z⇥)

dz⇥

���� f⌅N⇥/H fesc exp

⇥
� l(z, z⇥)

⇤mfp(z)

⇤
dz⇥, (33)

where l(z, z⇥) is the physical distance between the source at redshift z⇥ and the redshift

z under consideration, and ⇤mfp is the physical mean free path of the background

ionizing photons.

Various absorption systems could limit the mean free path of the background

ionizing photons. The most frequently discussed absorbers are Lyman limit systems,

which have large enough HI column density to keep self-shielded (e.g. Miralda-Escudé

et al. 2000; Furlanetto & Oh 2005; Bolton & Haehnelt 2013). Minihalos are also

self-shielding systems that could block ionizing photons. Furlanetto & Oh (2005)

developed a simple model for the mean free path of ionizing photons in a Universe

where minihalos dominate the recombination rate. However, as also mentioned in

Furlanetto & Oh (2005), the formation and the abundance of minihalos are highly

uncertain (Oh & Haiman 2003), and minihalos would be probably evaporated during

the late epoch of reionization (Barkana & Loeb 1999; Shapiro et al. 2004), although

they may consume substantial ionizing photons before they are totally evaporated

(Iliev et al. 2005). In addition to Lyman limit systems and minihalos, the accumulative

absorption by low column density systems can not be neglected (Furlanetto & Oh

2005), but the quantitative contribution from these systems are quite uncertain, and

need to be calibrated by high resolution simulations or observations.

Here we focus on the e�ect of Lyman limit systems on the mean free path of ion-

izing photons, and use a simple model for the IGM density distribution developed by

Miralda-Escudé et al. (2000) (hereafter MHR00). In the MHR00 model, the volume-

weighted density distribution of the IGM measured from numerical simulations can

be fitted by the formula

PV(�) d� = A0 exp

⌅
� (��2/3 � C0)2

2 (2⇥0/3)2

⇧
��� d� (34)

for z ⇥ 2� 6, where � = ⌅/⌅̄. Here ⇥0 and � are parameters fitted to simulations. The

value of ⇥0 can be extrapolated to higher redshifts by the function ⇥0 = 7.61/(1 + z)
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(Miralda-Escudé et al. 2000), and we take � = 2.5 for the redshifts of interest. The

parameters A0 and C0 are set by normalizing PV(⇥) and ⇥PV(⇥) to unity.

Using the density distribution of the IGM, the mean free path of ionizing photons

can be determined by the mean distance between self-shielding systems with relative

densities above a critical value ⇥crit, and can be written as (Miralda-Escudé et al. 2000;

Choudhury & Ferrara 2005)

⇤mfp =
⇤0

[1 � FV(⇥crit)]2/3
, (35)

where FV(⇥crit) is the volume fraction of the IGM occupied by regions with the relative

density lower than ⇥crit, given by

FV(⇥crit) =

⇧ �crit

0
PV(⇥) d⇥. (36)

Following Schaye (2001), and assuming photoionization equilibrium and case A recom-

bination rate, the critical relative density for a clump to self-shield can be approxi-

mately written as (see also Miralda-Escudé et al. 2000; Furlanetto & Oh 2005; Bolton

& Haehnelt 2013):

⇥crit = 36�2/3
�12 T

2/15
4

� µ

0.61

⇥1/3
⇤

fe
1.08

⌅�2/3 ⇤
1 + z

8

⌅�3

, (37)

where ��12 = �HI/10�12 s�1 is the hydrogen photoionization rate in units of 10�12 s�1,

T4 = T/104K is the gas temperature in units of 104K, µ is the mean molecular weight,

and fe = ne/nH is the free electron fraction with respect to hydrogen. For the mostly

ionized IGM during the late stage of reionization, we assume T4 = 2.

The HI photoionization rate �HI in Eq.(37) is related to the total number density

of ionizing photons n� in Eq.(33) by

�HI =

⇧
dn�

d⇧
(1 + z)3 c⌃⇤ d⇧, (38)

where dn�/d⇧ is the spectral distribution of the background ionizing photons, c is the

speed of light, and ⌃⇤ = ⌃0 (⇧/⇧0)�3 with ⌃0 = 6.3⇥ 10�18 cm2 and ⇧0 being the frequency

of hydrogen ionization threshold. Assuming a power law spectral distribution of the

form dn�/d⇧ = (n0
�/⇧0)(⇧/⇧0)

�⇥�1, in which n0
� is related to the total photon number

density n� by n� = n0
�/⇥, then the HI photoionization rate can be written as

�HI =
⇥

⇥ + 3
n� (1 + z)3 c⌃0. (39)

In the following we assume ⇥ = 3/2 to approximate the spectra of starburst galaxies

(Furlanetto & Oh 2005).
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background should be absent inside large neutral regions. Note
that in the toy model discussed above, the ionizing background
permeates through the neutral islands. It does not make sense
to distinguish the island barriers outside and the bubble barriers
inside and the problem of bubbles-in-island cannot be discussed.

In the following, we denote the host island scale (including the
bubbles inside) and the bubble scale by SI and SB, respectively,
the first down-crossing distribution by fI(SI, δI), and the condi-
tional probability for a bubble form inside as fB(SB, δB|SI, δI).
The probability distribution of finding a bubble of size SB in a
host island of size SI is then given by

F(SB, SI) = fI(SI, δI) · fB(SB, δB|SI, δI). (28)

The neutral mass of an island is given by the total mass of
the host island minus the masses of bubbles of various sizes
embedded in the host island, i.e.,

M = MI(SI) −
∑

i

Mi
B

(
Si

B

)
. (29)

The conditional probability distribution fB(SB, δB|SI, δI) char-
acterizes the size distribution of bubbles inside an island of scale
SI and overdensity δI and fB(SB, δB|SI, δI)dSB is the conditional
probability of a random walk that first up-crosses δB between
SB and SB + dSB, given a starting point of (SI, δI).

In order to compute fB, we could effectively shift the origin
point of coordinates to the point (SI, δI), then the method
developed by Zhang & Hui (2006) is still applicable. The
effective bubble barrier becomes:

δ′
B = δB(S + SI) − δI(SI), (30)

where S = SB − SI. Given an island (SI, δI), on average, the
fraction of volume (or mass) of the island occupied by bubbles
of different sizes is

qB(SI, δI; z) =
∫ Smax(ξ ·Mmin)

SI

[1 + δI D(z)]fB(SB, δB|SI, δI)dSB.

(31)

The factor [1 + δI D(z)] enters because these bubbles are
in the environment with underdensity of δI D(z), where D(z)
is the linear growth factor. Then, the net neutral mass of the host
island can be written as M = MI(SI) [1 − qB(SI, δI; z)]. Taking
into account the effect of bubbles-in-island, the neutral mass
function of the islands at a redshift z is

dn

dM
(M, z) = dn

dMI

dMI

dM
= ρ̄m,0

MI
fI(SI, z)

∣∣∣∣
dSI

dMI

∣∣∣∣
dMI

dM
. (32)

4. THE IONIZING BACKGROUND

The intensity of the ionizing background is very important
in the late reionization epoch. However, it has only been
constrained after reionization from the mean transmitted flux
in the Lyman-α forest (e.g., Wyithe & Bolton 2011; Calverley
et al. 2011) and in any case it evolves with redshift and depends
on the detailed history of reionization. Conversely, the evolution
of the ionizing background also affects the reionization process.

In the toy model presented in Section 3.2, we considered an
island-permeating ionizing background, for which the absorp-
tions from dense clumps are neglected and the resulting intensity
of the ionizing background is unreasonably high. Here, we give

a more realistic model for the ionizing background. Due to the
existence of dense clumps that have high recombination rates
and limit the mean free path of the ionizing background photons,
an island does not see all the ionizing photons emitted by all the
sources, but only out to a distance of roughly the mean free path
of the ionizing photons. The comoving number density of back-
ground ionizing photons at a redshift z can be modeled as the
integration of escaped ionizing photons that are emitted from
newly collapsed objects that survived to the distances between
the sources and the position under consideration:

nγ (z) =
∫

z

n̄H

∣∣∣∣
dfcoll(z′)

dz′

∣∣∣∣ f& Nγ /H fesc exp
[

− l(z, z′)
λmfp(z)

]
dz′,

(33)

where l(z, z′) is the physical distance between the source at
redshift z′ and the redshift z under consideration and λmfp is the
physical mean free path of the background ionizing photons.

Various absorption systems could limit the mean free path
of the background ionizing photons. The most frequently
discussed absorbers are LLSs, which have large enough H i
column densities to remain self-shielded (e.g., Miralda-Escudé
et al. 2000; Furlanetto & Oh 2005; Bolton & Haehnelt 2013).
Minihalos are also self-shielding systems that could block
ionizing photons. Furlanetto & Oh (2005) developed a simple
model for the mean free path of ionizing photons in a universe
where minihalos dominate the recombination rate. However, as
also discussed in Furlanetto & Oh (2005), the formation and
the abundance of minihalos are highly uncertain (Oh & Haiman
2003) and minihalos would be probably evaporated during the
late epoch of reionization (Barkana & Loeb 1999; Shapiro et al.
2004), although they may consume substantial ionizing photons
before they are totally evaporated (Iliev et al. 2005). In addition
to LLSs and minihalos, the accumulative absorption by low
column density systems cannot be neglected (Furlanetto & Oh
2005), but the quantitative contributions from these systems are
quite uncertain and need to be calibrated by high-resolution
simulations or observations.

Here, we focus on the effect of LLSs on the mean free path
of ionizing photons and use a simple model for the IGM density
distribution developed by Miralda-Escudé et al. (2000, hereafter
MHR00). In the MHR00 model, the volume-weighted density
distribution of the IGM measured from numerical simulations
can be fit by the formula

PV(∆) d∆ = A0 exp
[

− (∆−2/3 − C0)2

2 (2δ0/3)2

]
∆−β d∆ (34)

for z ∼ 2–6, where ∆ = ρ/ρ̄. Here, δ0 and β are parameters
fitted to simulations. The value of δ0 can be extrapolated to
higher redshifts by the function δ0 = 7.61/(1 + z) (MHR00)
and we take β = 2.5 for the redshifts of interest. The parameters
A0 and C0 are set by normalizing PV(∆) and ∆PV(∆) to unity.

Using the density distribution of the IGM, the mean free path
of ionizing photons can be determined by the mean distance
between self-shielding systems with relative densities above a
critical value ∆crit and can be written as (Choudhury & Ferrara
2005, MHR00)

λmfp = λ0

[1 − FV(∆crit)]2/3
, (35)
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Fig. 5.— The redshift evolution of the hydrogen ionization rate ��12.

It has been suggested that the characteristic length ⇥0 in Eq.(35) is related to the

Jeans length and can be fixed by comparing with low redshift observations (Choudhury

& Ferrara 2005; Kulkarni et al. 2013). We take ⇥0 = AmfprJ, where rJ is the physical

Jeans length. Taking the proportional constant Amfp as a free parameter, the comoving

number density of background ionizing photons n�, or equivalently the HI photoion-

ization rate �HI, can be solved by combining Eq.(33) - (37) and Eq.(39). We scale

the hydrogen photoionization rate to be �HI = 10�12.8 s�1 at redshift 6, as suggested by

recent measurements from the Ly-� forest (Wyithe & Bolton 2011; Calverley et al.

2011). Then the parameter Amfp is constrained to be Amfp = 0.482. The redshift evo-

lution of the hydrogen photoionization rate due to the ionizing background is shown

in Fig. 5. Note that by scaling the background photoionization rate of hydrogen to

the observed value, we implicitly take into account the possible absorptions due to

minihalos and low column density systems.

In the above treatment of the ionizing background, the derived intensity is ef-

fectively the averaged value over the whole Universe. Due to the clustering of the

ionizing sources, however, the ionizing background should fluctuate significantly from

place to place at the end of reionization. The detailed space fluctuations of the ionizing

background would be challenging to incorporate, and for the purpose of illustrating

the island model and predicting the statistical results in the next section, here we use

a uniform ionizing background with the averaged intensity.



*Solving for the first-down-crossing distribution (Zhang & Hui 2006):

(the “island-in-island” problem is naturally solved)

*The mass function of islands:
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onset redshift” zback, and it can be solved from the following equation:

�I(S = 0; z = zback) = �c(zback)�
 
2S2

max(zback) erfc
�1(⇥�1) = 0. (14)

We take {fesc, f⌅, N�/H, n̄rec} = {0.2, 0.1, 4000, 1} as the fiducial set of parameters, so that ⇥ = 40

and zback = 8.6, consistent with the observations of the quasars/gamma-ray bursts absorption

spectra (Gallerani et al. 2008a,b) and Lyman alpha emitters surveys (e.g. Malhotra & Rhoads

2006; Dawson et al. 2007) which suggests xHI ⌅ 1 at z ⇤ 6. We note that this background

onset redshift is also consistent with our ionizing background model presented in §4,
in which the intensity of the ionizing background starts to rapidly increase around

redshift z ⇥ 8 � 9 (see Fig. 5). However, the exact value of this background onset

redshift has little impact on the final model predictions on the island distribution, as

the ionizing background increases quite rapidly during the late stage of reionization

(see §4) and the main background contribution to the ionizations comes from the

redshift range just above the redshift under consideration.

As all trajectories start from the point (S, �) = (0, 0), we see that instead of the usual up-

crossing condition in the excursion set model, here the condition of forming a neutral island is

represented by a down-crossing of the barrier. Once a random walk trajectory hits the island

barrier, we identify an island with the crossing scale, and assign the points inside this region to a

neutral island of the appropriate mass. Similar to the “cloud-in-cloud” problem in the halo model

(Bond et al. 1991), or the “void-in-void” problem in the void model (Sheth & van de Weygaert

2004), there is also an “island-in-island” problem. As in those cases, this problem can also be solved

naturally by considering only the first-down-crossings of the barrier curve.

For a general barrier, Zhang & Hui (2006) developed an intergral equation method for com-

puting the first-up-crossing distribution. Similarly, denoting the island scale with its variance SI,

the first-down-crossing distribution of random trajectories with an arbitrary island barrier can be

solved as:

fI(SI) = �g1(SI)�
� SI

0
dS⇥fI(S

⇥)
�
g2(SI, S

⇥)
⇥
, (15)

where

g1(SI) =

⌃
�I(SI)

SI
� 2

d�I
dSI

⌥
P0[�I(SI), SI], (16)

g2(SI, S
⇥) =

⌃
2
d�I
dSI

� �I(SI)� �I(S⇥)

SI � S⇥

⌥
P0[�I(SI)� �I(S

⇥), SI � S⇥], (17)

and P0(�, S) is the normal Gaussian distribution with variance S, which is defined as

P0(�, S) =
1⌥
2⇤S

exp

⌅
� �2

2S

⇧
. (18)

These integral equations can be solved numerically with the algorithm of Zhang & Hui (2006), we

can then obtain the mass function of islands at redshift z:

dn

d lnMI
(MI, z) = ⌅̄m,0fI(SI, z)

⇤⇤⇤⇤
dSI

dMI

⇤⇤⇤⇤ . (19)
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These integral equations can be solved numerically with the algorithm of Zhang & Hui (2006), we

can then obtain the mass function of islands at redshift z:
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d lnMI
(MI, z) = ⌅̄m,0fI(SI, z)

⇤⇤⇤⇤
dSI

dMI
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With the neutral island mass function, the volume fraction of neutral regions is given by

QI
V =

�
dMI

dn

dMI
V (MI). (20)

3.2. A toy model with island-permeating ionizing background photons

To illustrate the basic ideas of the island model, let us consider a toy model in which the

ionizing photons permeated through the neutral islands with a uniform density. This is not a

physically realistic model, because if ionizing photons can permeate through the neutral regions

with su⇥cient flux, there would be no distinct ionizing bubbles or neutral islands, though it may be

possible to have a small component of penetrating radiation such as hard X-rays, but that would

be much smaller than the total ionizing background. The reason we consider this model is that it

is possible to derive a simple analytical solution, which could illustrate some aspects of the island

model.

The island-permeating ionizing background photons are likely to be hard X-rays,

whose mean free paths are extremely large even in the IGM with a high neutral frac-

tion. Therefore, here we use an extremely simple model for the ionizing background, in

which the absorptions by dense clumps are neglected, and the mean free path of these

background photons are comparable with the Hubble scale. A more realistic model

for the ionizing background will be described in the next section. Further, we assume

that the total number of ionizing photons produced by redshift z is proportional to

the total collapse fraction of the Universe at that redshift. Some of these photons

would have already been consumed by ionizations took place before that redshift, and

the ionizing background photons are what left behind. The comoving number density

of background ionizing photons is then given by

n� = n̄H fcoll(z) f⇤N�/H fesc � (1�QI
V) n̄H (1 + n̄rec), (21)

where n̄H is the average comoving number density of hydrogen in the Universe, and

the other parameters are the same as those in Eq.(3). The number density of ionizing

photons given by Eq. (21) depends on the global neutral fraction QI
V, which is only

known after we have applied the ionizing background intensity itself and solved the

reionization model, so this equation should be solved iteratively.

Suppose that the background ionizing photons are uniformly distributed and consumed within

the islands, then Nback is proportional to the island volume. We see from Eq.(13) that Nback cancels

with the island mass M in the denominator, and we have Nback/M = n�/⇥̄m. Therefore, in this

model, the K factor is essentially independent of M , i.e. K(M, z) = K(z), then the island barrier

becomes:

�I(M, z) = �c(z)�
⇥

2 [Smax � S(M)] erfc�1 [K(z)] . (22)

(Xu et al. 2014)
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Fig. 6.— Left panel: the island barriers for our fiducial model. The solid, dashed and dot-dashed

curves are for redshifts 6.9, 6.7 and 6.5 from top to bottom respectively, and the corresponding

neutral fractions of the Universe (excluding the bubbles in islands) are QHI
V = 0.17, 0.11, and 0.05,

respectively. Right panel: The corresponding first down-crossing distributions at the same redshifts

as the left panel.

where Ri and Rf denote the initial and final scale of the island respectively. This shows that the

change in R is independent of the mass of the island, but depends solely on the elapsed time. The

total number of background ionizing photons consumed is given by

Nback =
4�

3

�
R3

i �R3
f

⇥
n̄H(1 + n̄rec), (44)

5.2. Island Size Distribution

With this model for the consumption behavior of the background ionizing photons, and taking

the fiducial set of parameters, we plot the island barriers of inequation (12) in the left panel of

Fig. 6 for several redshifts. The corresponding first down-crossing distributions as a function of the

host island scale SI (i.e. including ionizing bubbles inside the island) are plotted in the right panel

of Fig. 6.

Unlike the toy model with permeating ionizing photons, in this model the shape of the island

barriers is drastically di�erent from the bubble barriers, hence a di�erent shape of the first down-

crossing distribution curves. The island and bubble barriers have the same intercept at S ⇥ 0,

because on very large scales, the contribution of the ionizing background which is proportional

The island-vS model – varying surface area 

island barrier first down-crossing distribution
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Fig. 7.— The mass function of the host islands in terms of the mass at redshift z (thick lines)

and the initial mass at redshift zback (thin lines) for our fiducial model. The solid, dashed, and

dot-dashed lines are for z = 6.9, 6.7, and 6.5, from top to bottom respectively.

to the surface area would become unimportant when compared with the self-ionization which is

proportional to the volume. However, the island barriers bend downward at S > 0, because of

the contribution of the ionizing background. As the barrier curves become gradually steeper when

approaching larger S, it is increasingly harder for the random walks to first down-cross them at

smaller scales, even though on the smaller scales the dispersion of the random trajectory grow

larger. As a result, the first down-crossing distribution rapidly increases to a peak value and drops

down on small scales, and there is a mass-cut on the host island scale, MI,min, at each redshift

in order to make sure K(M, z) ⇤ 0. This lower cut on the island mass scale assures �R ⇥ Ri,

i.e. the whole island is not completely ionized during this time by the ionizing background, and

MI,min is the minimum mass of the host island at zback that can survive till the redshift z under

consideration.

The mass distribution function of the host islands can be obtained directly from Eq. (19), from

which we can see clearly the shrinking process of these islands. What we are interested is the mass

of the host island at redshift z, but the mass scale M in Eqs. (11-13) is the initial island mass at

redshift zback. We may convert the two masses using Eq. (43):

Mf

Mi
= (1� �R

Ri
)3 (45)

Islands with initial radius Ri < �R would not survive, and islands with larger radius would also

evolve into smaller ones.
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total number of background ionizing photons consumed is given by

Nback =
4�

3

�
R3

i �R3
f

⇥
n̄H(1 + n̄rec), (38)

4.2. Size Distribution

With this model for the consumption behavior of the background ionizing photons, and taking

the fiducial set of parameters, we plot the island barriers of inequation (12) in the left panel of

Fig. 5 for several redshifts. The corresponding first down-crossing distributions as a function of the

host island scale SI (i.e. including ionizing bubbles inside the island) are plotted in the right panel

of Fig. 5. Note that obtaining these barriers is highly non-trivial, because the barrier depends on

the intensity of the ionizing background, while the ionizing background itself also depends on the

reionization history. For the moment, let us first focus on obtaining solutions for a given barrier.

Unlike the toy model with permeating ionizing photons, in this model the shape of the island

barriers is drastically di⇥erent from the bubble barriers, hence a di⇥erent shape of the first down-

crossing distribution curves. The island and bubble barriers have the same intercept at S ⌅ 0,

because on very large scales, the contribution of the ionizing background which is proportional

to the surface area would become unimportant when compared with the self-ionization which is

proportional to the volume. However, the island barriers bend downward at S > 0, because of the

contribution of the ionizing background. As the barrier curves are quite steep, it is increasingly

harder for the random walks to first down-cross them at smaller scales, even though on the smaller

scales the dispersion of the random trajectory grow larger. As a result, the first down-crossing

distribution drops rapidly on small scales, and there is a mass cut on the host island scale, MI,min,

at each redshift in order to make sure K(M, z) ⇤ 0. This lower cut on the island mass scale

assures �R ⇥ Ri, i.e. the whole island is not completely ionized during this time by the ionizing

background, and MI,min is the minimum mass of the host island at zback that can survive till the

redshift z under consideration.

The mass distribution function of the host islands can be obtained directly from Eq. (19), from

which we can see clearly the shrinking process of these islands. What we are interested is the mass

of the host island at redshift z, but the mass scale M in Eqs. (11-13) is the initial island mass at

redshift zback. We may convert the two masses using Eq. (37):

Mf

Mi
= (1� �R

Ri
)3 (39)

Islands with initial radius Ri < �R would not survive, and islands with larger radius would also

evolve into smaller ones.

The distributions of the host island mass (including ionized bubbles inside) are plotted for z =

8.45, 8.40, and 8.35 in Fig. 6 as thick lines. The distributions of the corresponding progenitors

at redshift zback are plotted as thin lines. Using our fiducial model parameters, the corresponding

Ø The shrinking hosts

host island mass function



Solving for a two-barrier problem:

1 - The first down-crossing distribution 

of random walks w.r.t. island barrier: 

2 - The conditional first up-crossing distribution 

w.r.t. bubble barrier:

The effective bubble barrier:

– 10 –

the first-down-crossing distribution of random trajectories with an arbitrary island barrier can be

solved as:

fI(SI) = −g1(SI)−
∫ SI

0
dS′fI(S

′)
[

g2(SI, S
′)
]

, (14)

where

g1(SI) =

[

δI(SI)

SI
− 2

dδI
dSI

]

P0[δI(SI), SI], (15)

g2(SI, S
′) =

[

2
dδI
dSI

−
δI(SI)− δI(S′)

SI − S′

]

P0[δI(SI)− δI(S
′), SI − S′], (16)

and P0(δ, S) is the normal Gaussian distribution with variance S, which is defined as

P0(δ, S) =
1√
2πS

exp

(

−
δ2

2S

)

. (17)

These integral equations can be solved numerically with the algorithm of Zhang & Hui (2006), we

can then obtain the mass function of islands at redshift z:

dn

d lnMI
(MI, z) = ρ̄m,0fI(SI, z)

∣

∣

∣

∣

dSI

dMI

∣

∣

∣

∣

. (18)

With the neutral island mass function, the volume fraction of neutral regions is given by

Q̄V =

∫

dMI
dn

dMI
V (MI). (19)

Following the assumption that the total number of ionizing photons produced at redshift z is

proportional to the total collapse fraction of the Universe, the average comoving number density

of the background ionizing photons nγ can be obtained by subtracting the consumed amount of

ionizing photons from the total produced amount, which is

nγ = n̄H fcoll(M → ∞, z) f"Nγ/H fesc − (1− Q̄V) n̄H (1 + n̄rec), (20)

where n̄H is the average comoving number density of hydrogen in the Universe, and the other

parameters are the same as those in Eq.(3). At any given redshift that the island model is applicable,

the ionizing background intensity and the corresponding mean neutral fraction can be computed

iteratively.

3.2. A toy model with island-permeating ionizing background photons

To illustrate the basic ideas of the island model, let us consider a toy model in which the

ionizing photons permeated through the neutral islands with a uniform density. This is not a

physically realistic model, because if ionizing photons can permeate through the neutral regions

with sufficient flux, there would be no distinct ionizing bubbles or neutral islands, though it may be
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In the following, we denote the host island scale (including the bubbles inside) and the bubble

scale by SI and SB respectively, the first down-crossing distribution by fI[SI, δI], and denote the

conditional probablity for a bubble form inside as fB[SB, δB|SI, δI]. The probability distribution of

finding a bubble of size SB in a host island of size SI is then given by

F(SB, SI) = fI[SI, δI] · fB[SB, δB|SI, δI]. (27)

The neutral mass of an island is given by the total mass of the host island minus the masses of

bubbles of various sizes embedded in the host island, i.e.

M = MI(SI)−
∑

i

M i
B(S

i
B). (28)

The conditional probability distribution fB[SB, δB|SI, δI] characterizes the size distribution of bub-

bles inside an island of scale SI and overdensity δI, and fB[SB, δB|SI, δI]dSB is the conditional

probability of a random walk which first up-crosses δB at between SB and SB + dSB given a start-

ing point of (SI, δI).

In order to compute fB, we could effectively shift the origin of coordinates to the point (SI, δI),

then the method developed by Zhang & Hui (2006) is still applicable. The effective bubble barrier

becomes:

δ′B = δB(S + SI)− δI(SI), (29)

where S = SB − SI. Given an island (SI, δI), on average, the fraction of volume (or mass) of the

island occupied by bubbles of different sizes is

qB(SI, δI; z) =

∫ Smax(ξ·Mmin)

SI

[1 + δID(z)] fB[SB, δB|SI, δI] dSB. (30)

The factor [1 + δID(z)] enters because these bubbles are in the environment with underdensity of

δID(z), where D(z) is the linear growth factor. Then the net neutral mass of the host island can

be written as M = MI(SI) [1 − qB(SI, δI; z)]. Taking into account the effect of bubbles-in-island,

the neutral mass function of the islands at redshift z is

dn

dM
(M, z) =

dn

dMI

dMI

dM
=

ρ̄m,0

MI
fI(SI, z)

∣

∣

∣

∣

dSI

dMI

∣

∣

∣

∣

dMI

dM
. (31)

4. The Size Distribution of Neutral Islands

We now use the excursion set model developed above to study the neutral islands during the

reionization process. In the last section, we used a simple toy model to illustrate the basic formalism,

but we have noted that it is based on an unrealistic assumption, that the ionizing photons permeate

through the neutral islands. Here we consider more physically motivated model assumptions.

We assume that a spatially homogeneous ionizing background flux is established throughout

all of the ionized regions at redshift zback. These ionizing photons can not penetrate the neutral
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probability of a random walk which first up-crosses δB at between SB and SB + dSB given a start-

ing point of (SI, δI).

In order to compute fB, we could effectively shift the origin of coordinates to the point (SI, δI),

then the method developed by Zhang & Hui (2006) is still applicable. The effective bubble barrier

becomes:

δ′B = δB(S + SI)− δI(SI), (31)

where S = SB − SI. Given an island (SI, δI), on average, the fraction of volume (or mass) of the

island occupied by bubbles of different sizes is

qB(SI, δI; z) =

∫ Smax(ξ·Mmin)

SI

[1 + δID(z)] fB[SB, δB|SI, δI] dSB. (32)

The factor [1 + δID(z)] enters because these bubbles are in the environment with underdensity of

δID(z), where D(z) is the linear growth factor. Then the net neutral mass of the host island can

be written as M = MI(SI) [1 − qB(SI, δI; z)]. Taking into account the effect of bubbles-in-island,

the neutral mass function of the islands at redshift z is

dn

dM
(M, z) =

dn

dMI

dMI

dM
=

ρ̄m,0

MI
fI(SI, z)

∣

∣

∣

∣

dSI

dMI

∣

∣

∣

∣

dMI

dM
. (33)

4. The Reionization Process

4.1. Ionization at the surfaces of neutral islands

We now use the excursion set model developed above to study the neutral islands during the

reionization process. In the last section, we used a simple toy model to illustrate the basic formalism,

but we have noted that it is based on an unrealistic assumption, that the ionizing photons permeate

through the neutral islands. Here we consider more physically motivated model assumptions.

We assume that a spatially homogeneous ionizing background flux is established throughout

all of the ionized regions at redshift zback. These ionizing photons can not penetrate the neutral

islands, but were consumed near the surface of the islands. We may then assume that the photons

consumed by an island at any instant is proportional to its surface area, or in terms of mass, M2/3.

The number of background ionizing photons consumed is then given by

Nback =

∫

F (z)ΣI(1 + z) dt, (34)

where ΣI is the comoving surface area of the neutral island, while F (z) is the photon flux of the

ionizing background, which could be determined iteratively. For spherical islands, the surface area

is related to the scale radius by ΣI = 4πR2. For non-spherical islands, one could still introduce a

characteristic scale R and the area would be related to R2. In fact, under the action of the ionizing

– 16 –

probability of a random walk which first up-crosses δB at between SB and SB + dSB given a start-

ing point of (SI, δI).

In order to compute fB, we could effectively shift the origin of coordinates to the point (SI, δI),

then the method developed by Zhang & Hui (2006) is still applicable. The effective bubble barrier

becomes:

δ′B = δB(S + SI)− δI(SI), (31)

where S = SB − SI. Given an island (SI, δI), on average, the fraction of volume (or mass) of the

island occupied by bubbles of different sizes is

qB(SI, δI; z) =

∫ Smax(ξ·Mmin)

SI

[1 + δID(z)] fB[SB, δB|SI, δI] dSB. (32)

The factor [1 + δID(z)] enters because these bubbles are in the environment with underdensity of

δID(z), where D(z) is the linear growth factor. Then the net neutral mass of the host island can

be written as M = MI(SI) [1 − qB(SI, δI; z)]. Taking into account the effect of bubbles-in-island,

the neutral mass function of the islands at redshift z is

dn

dM
(M, z) =

dn

dMI

dMI

dM
=

ρ̄m,0

MI
fI(SI, z)

∣

∣

∣

∣

dSI

dMI

∣

∣

∣

∣

dMI

dM
. (33)

4. The Reionization Process

4.1. Ionization at the surfaces of neutral islands

We now use the excursion set model developed above to study the neutral islands during the

reionization process. In the last section, we used a simple toy model to illustrate the basic formalism,

but we have noted that it is based on an unrealistic assumption, that the ionizing photons permeate

through the neutral islands. Here we consider more physically motivated model assumptions.

We assume that a spatially homogeneous ionizing background flux is established throughout

all of the ionized regions at redshift zback. These ionizing photons can not penetrate the neutral

islands, but were consumed near the surface of the islands. We may then assume that the photons

consumed by an island at any instant is proportional to its surface area, or in terms of mass, M2/3.

The number of background ionizing photons consumed is then given by

Nback =

∫

F (z)ΣI(1 + z) dt, (34)

where ΣI is the comoving surface area of the neutral island, while F (z) is the photon flux of the

ionizing background, which could be determined iteratively. For spherical islands, the surface area

is related to the scale radius by ΣI = 4πR2. For non-spherical islands, one could still introduce a

characteristic scale R and the area would be related to R2. In fact, under the action of the ionizing

The bubbles-in-island effect

(Xu et al. 2014)

第 2章 再电离物理模型及其改进

图 2-2 随机轨迹与电离、中性区域的判定示意图：左侧图 (a)表示电离区的寻找过程，对
应为随机轨迹由下至上第一次跨越 bubble barrier；而图 (b)表示中性区及其内部小电
离区的寻找过程，分别对应为随机轨迹第一次自上而下穿越 island barrier 以及穿越
island barrier之后第一次由下至上穿越 bubble barrier的过程。

Figure 2-2 The Random Trajectory for Determining of the Ionization or Neutral Regions:
the sub-figure (a) shows the process of finding ionized regions, which correspond to the
first up-crossing of the bubble barrier; the sub-figure (b) shows the process of finding
neutral regions and small ionized regions inside them, which corresponding to the first
down-crossing of the island barrier and then first up-crossing of the bubble barrier.

移下的平均坍缩率 |d𝑓 ∞coll(𝑧′)d(𝑧′) |来简化背景电离光子的产生，此外还需考虑一定的
电离效率 ζ，以及经过一定距离的衰减因素，故而背景电离光子的数密度可以表
示为：

𝑛𝛾(𝑧) = ∫𝑧 ̄𝑛H |d𝑓 ∞coll (𝑧′)d𝑧′ | 𝜁 exp [−𝑙 (𝑧, 𝑧′)𝜆mfp(𝑧) ] (1 − 𝑓 hostHI )d𝑧′ (2-5)

其中 𝑙 (𝑧, 𝑧′) 表示位于红移 𝑧′ 处的源与当前考虑的红移值 z 的物理距离大小；
而 𝜆mfp 表示电离光子的平均自由程，其值由大尺度中性岛所导致的平均自由
程 𝜆HI 和小尺度吸收体所导致的平均自由程 𝜆abs 两部分所贡献，也即有 𝜆−1mfp =𝜆−1HI + 𝜆−1abs。对于 𝜆HI 的部分，是由大尺度中性岛的平均距离 (Xu等, 2017)所决
定的。而对于 𝜆abs的计算，这里需要声明的是，旧版模型中采用的复合数为一常
量，并不随空间位置和红移变化，因此在复合的层面是没有考虑小尺度吸收体的
复合贡献。对于这里小尺度吸收体所贡献的平均自由程 𝜆abs 的处理，直接采用
Songalia和 Cowie等人提出的经验公式 (Songaila等, 2010)进行直接计算。考虑
到只有电离的区域存在背景光子，而中性区包括中性岛内部都没有背景光子的
存在，引入因子 𝑓 hostHI 表示中性岛所占据的体积分数。进而可以通过背景光通量

11



*The bubbles-in-island fraction:

*The neutral island mass function:
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In the following, we denote the host island scale (including the bubbles inside) and the bubble

scale by SI and SB respectively, the first down-crossing distribution by fI[SI, δI], and denote the

conditional probablity for a bubble form inside as fB[SB, δB|SI, δI]. The probability distribution of

finding a bubble of size SB in a host island of size SI is then given by

F(SB, SI) = fI[SI, δI] · fB[SB, δB|SI, δI]. (27)

The neutral mass of an island is given by the total mass of the host island minus the masses of

bubbles of various sizes embedded in the host island, i.e.

M = MI(SI)−
∑

i

M i
B(S

i
B). (28)

The conditional probability distribution fB[SB, δB|SI, δI] characterizes the size distribution of bub-

bles inside an island of scale SI and overdensity δI, and fB[SB, δB|SI, δI]dSB is the conditional

probability of a random walk which first up-crosses δB at between SB and SB + dSB given a start-

ing point of (SI, δI).

In order to compute fB, we could effectively shift the origin of coordinates to the point (SI, δI),

then the method developed by Zhang & Hui (2006) is still applicable. The effective bubble barrier

becomes:

δ′B = δB(S + SI)− δI(SI), (29)

where S = SB − SI. Given an island (SI, δI), on average, the fraction of volume (or mass) of the

island occupied by bubbles of different sizes is

qB(SI, δI; z) =

∫ Smax(ξ·Mmin)

SI

[1 + δID(z)] fB[SB, δB|SI, δI] dSB. (30)

The factor [1 + δID(z)] enters because these bubbles are in the environment with underdensity of

δID(z), where D(z) is the linear growth factor. Then the net neutral mass of the host island can

be written as M = MI(SI) [1 − qB(SI, δI; z)]. Taking into account the effect of bubbles-in-island,

the neutral mass function of the islands at redshift z is

dn

dM
(M, z) =

dn

dMI

dMI

dM
=

ρ̄m,0

MI
fI(SI, z)

∣

∣

∣

∣

dSI

dMI

∣

∣

∣

∣

dMI

dM
. (31)

4. The Size Distribution of Neutral Islands

We now use the excursion set model developed above to study the neutral islands during the

reionization process. In the last section, we used a simple toy model to illustrate the basic formalism,

but we have noted that it is based on an unrealistic assumption, that the ionizing photons permeate

through the neutral islands. Here we consider more physically motivated model assumptions.

We assume that a spatially homogeneous ionizing background flux is established throughout

all of the ionized regions at redshift zback. These ionizing photons can not penetrate the neutral
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probability of a random walk which first up-crosses δB at between SB and SB + dSB given a start-

ing point of (SI, δI).

In order to compute fB, we could effectively shift the origin of coordinates to the point (SI, δI),

then the method developed by Zhang & Hui (2006) is still applicable. The effective bubble barrier

becomes:

δ′B = δB(S + SI)− δI(SI), (31)

where S = SB − SI. Given an island (SI, δI), on average, the fraction of volume (or mass) of the

island occupied by bubbles of different sizes is

qB(SI, δI; z) =

∫ Smax(ξ·Mmin)

SI

[1 + δID(z)] fB[SB, δB|SI, δI] dSB. (32)

The factor [1 + δID(z)] enters because these bubbles are in the environment with underdensity of

δID(z), where D(z) is the linear growth factor. Then the net neutral mass of the host island can

be written as M = MI(SI) [1 − qB(SI, δI; z)]. Taking into account the effect of bubbles-in-island,

the neutral mass function of the islands at redshift z is

dn

dM
(M, z) =

dn

dMI

dMI

dM
=

ρ̄m,0

MI
fI(SI, z)

∣

∣

∣

∣

dSI

dMI

∣

∣

∣

∣

dMI

dM
. (33)

4. The Reionization Process

4.1. Ionization at the surfaces of neutral islands

We now use the excursion set model developed above to study the neutral islands during the

reionization process. In the last section, we used a simple toy model to illustrate the basic formalism,

but we have noted that it is based on an unrealistic assumption, that the ionizing photons permeate

through the neutral islands. Here we consider more physically motivated model assumptions.

We assume that a spatially homogeneous ionizing background flux is established throughout

all of the ionized regions at redshift zback. These ionizing photons can not penetrate the neutral

islands, but were consumed near the surface of the islands. We may then assume that the photons

consumed by an island at any instant is proportional to its surface area, or in terms of mass, M2/3.

The number of background ionizing photons consumed is then given by

Nback =

∫

F (z)ΣI(1 + z) dt, (34)

where ΣI is the comoving surface area of the neutral island, while F (z) is the photon flux of the

ionizing background, which could be determined iteratively. For spherical islands, the surface area

is related to the scale radius by ΣI = 4πR2. For non-spherical islands, one could still introduce a

characteristic scale R and the area would be related to R2. In fact, under the action of the ionizing

The bubbles-in-island effect
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Fig. 8.— Left panel: The mass function of bubbles in an island of scale SI = 0.01, 0.05, and 0.1,

from bottom to top respectively. The redshift shown here is 6.9. Right panel: The average mass

fraction of bubbles in an island as a function of the island scale at redshifts z = 6.9, 6.7, and

6.5, from top to bottom respectively. The percolation threshold pc = 0.16 is also shown as the

horizontal line.

M � 1012M� host islands, and about 42% for M � 1014M� host islands. This is because

what are left at later time are relatively deep underdense regions, and the probability of forming

galaxies in such underdense environments is lower.

Excluding the bubbles in islands, we plot the mass function and the size distribution of the net

neutral islands in the left and right panel of Fig. 9 respectively. The solid, dashed, and dot-dashed

lines are for z = 6.9, 6.7, and 6.5, with a volume filling factor of the net neutral islands of QHI
V =

0.17 (z = 6.9), 0.11 (z = 6.7), and 0.05 (z = 6.5), respectively. Similar to the host island mass

function shown in Fig. 7, there is also a small scale cuto� on the neutral island mass due to the

existence of an ionizing background. Because of the high bubbles-in-island fraction in large host

islands, excluding the bubbles in islands results in much fewer large islands. As seen from the size

distribution in the right panel, in which the scale R is converted from the neutral island volume

assuming spherical shape, both the mass fractions of large and small islands decrease with time,

and the distribution curve becomes sharper and sharper, but the characteristic scale of the neutral

islands remains almost unchanged.

Fig. 9 shows basically the number and mass distribution of the neutral components of the host

islands. However, the results of bubbles-in-island fraction in the right panel of Fig. 8 show that

within large host islands, a large fraction of the island volume could be ionized by the photons from

pc = 0.16

for Gaussian random fields

The problem of large bubbles-in-island fraction

Host islands à overestimate the neutral fraction

Neutral islands à not the real image

Difficult to visually identify the host islands

Break down of bubble model inside islands



The role of percolation threshold pc

Ø The bubble model regime: z > zBp (xHII < pc)

Ø The island model regime: z < zIp (xHI < pc)

Ø The background onset redshift: zBp > zback > zIp

Ø The definition of bona fide neutral islands: qB < pc
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Fig. 10.— The basic island barriers (green curves), the percolation threshold induced barriers (red

curves), and the e�ective island barriers (black curves) for our fiducial model. The solid, dashed

and dot-dashed curves are for redshifts 6.9, 6.7 and 6.5 from top to bottom respectively.

from cosmological simulations. However, the spatial distribution of ionized bubbles and neutral

islands are much less filamentary than the gravitationally clustered dark matter or galaxies. As

the ionization field follows the density field (Battaglia et al. 2012a), which is almost Gaussian

on large scales (Planck Collaboration et al. 2013b), here we use the percolation threshold for a

gaussian random field of pc = 0.16 (Klypin & Shandarin 1993), below which we may assume that

the bubbles-in-island does not percolate through the whole island.

The problem of percolation appears in several stages of reionization. At the early stage of

reionization, the filling factor of ionized bubbles increases as the bubble model predicted. Once

the bubble filling factor becomes larger than the percolation threshold pc, the ionized bubbles are

no longer isolated, and the predictions made from the bubble model are not accurate anymore.

Therefore, the threshold pc sets a critical redshift zBp, below which the bubble model may not be

reliable. Similarly, the model of neutral islands can make accurate predictions only below a certain

redshift zIp, when the island filling factor is below pc. The ionizing background was set up after the

ionized bubbles percolated but before the islands were all isolated, so zBp > zback > zIp. Finally,

the percolation threshold may also be applied to the bubbles-in-island fraction. An island with a

high value of qB may not qualify as a whole neutral island, and the bubbles inside it are probably

not isolated regions.

It may be desirable to consider also the distribution of those bona fide neutral islands, for

which the bubble fraction is below the percolation threshold, i.e. after excluding those islands

The percolation criterion

Island barrier

Percolation 
barrier

Combined barrier

The additional barrier is obtained by solving 

qB(SI, δI; z) < pc

pc = 0.16 for Gaussian random fields
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Fig. 11.— The size distribution of neutral islands in our fiducial model taking into account the

bubbles-in-island e�ect and the pc cuto� on bubbles-in-island fraction. The solid, dashed, and dot-

dashed curves are for redshifts z = 6.9, 6.7, and 6.5, respectively, and the corresponding volume

filling factors of neutral islands are QHI
V = 0.16 (z = 6.9), 0.09 (z = 6.7), and 0.04 (z = 6.5),

respectively.

used here, the second e�ect dominates for the redshifts of interest, and the neutral

fractions predicted in the model with pc cuto� is slightly lower than in the model

without pc cuto�.

As shown in Fig. 11, in this model, the island size distribution after zIp also has a peak. For

this set of model parameters, the characteristic size of neutral islands at z = 6.9 is about

1.6 Mpc, but the distribution extends a range, with the lower value as small as 0.2 Mpc, and

the high value as large as 10 Mpc. As the redshift decreases, small islands disappear rapidly

because of the ionizing background. This is qualitatively consistent with simulation results (Shin

et al. 2008) in which small islands are much rarer during the late reionization as compared to those

small ionized bubbles in the early stage. As the reionization proceeds, the large islands shrink and

the small islands are being swallowed by the ionizing background, with the small ones disappearing

more rapidly, and the peak position of the distribution curve shifts slightly towards larger scale

but does not change much. Due to the rapidly decreasing number of small islands, the distribution

curve becomes narrower. The distribution also becomes taller with decreasing redshift because it

is normalized against the volume neutral fraction QHI
V at each redshift. With QHI

V decreasing, the

normalized distribution has narrower and higher peaks, but the absolute number of neutral islands

per comoving volume is decreasing.

Results – the size distribution with pc cutoff

A characteristic scale that 
does not change much with 
redshift! 

(Xu et al. 2014)



Initial ionization field at z >~ zback generated by the 21cmFAST

A two-step filtering algorithm

1 – Based on the excursion set theory, we filter the evolved density field and 

find host islands with the island barrier including an ionizing background.

2 – Find bubbles in islands with the bubble barrier without an ionizing 

background.

A self-consistent treatment for the ionizing background taking into account the 

effect of absorption systems 

An iterative procedure and adaptive redshift steps. 

Semi-numerical simulation – islandFAST

Miralda-Escudé et al. (2000) model. Now we assume

z z z , 11mfp
1

I
1

abs
1l l l= +- - -( ) ( ) ( ) ( )

where Il is the MFP of ionizing photons due to large-scale
underdense islands, and absl is the MFP limited by small-scale
overdense absorbers, including the effects of Lyman limit
systems and minihalos, or other opacity contributions that are
not resolved in our simulation. While in principle one could
also develop a model including the evolution of the small-scale
absorbers, here we adopt a more empirical approach. Songaila
& Cowie (2010) provided a fitting formula for the evolution of
MFP of ionizing photons based on their observed number
density of Lyman limit systems up to redshift 6, which reads

z
50

1
4.5

p Mpc . 12abs

4.44
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We adopt this evolutionary form for the cumulative effect of all
kinds of small-scale absorbers assuming the LLSs as the main
contributor. We further assume that the number density of
small-scale absorbers evolves smoothly near the completion of
reionization, so the above fitting formula can be extrapolated to
the late stage of reionization.

The MFP of ionizing photons and the resultant ionizing
background is incorporated in islandFAST in an iterative
procedure. We start from a trial value of Il for a redshift a bit
lower than zback, and applying the ionizing background model
(Equation (10)) and the island barrier (Equation (5)). We
generate the host island field, then compute the MFP of
ionizing photons directly from the host island field. Practically,
we cast lines (a total of 107 for each realization) with random
starting points located in ionized regions and with random
directions, and calculate the distances from the starting points
and the ending points where phase transitions occur. From the
distribution of the distances, we find the MFP by equaling it to
the critical value that a fraction e1 of the total distances are
larger than it. This is consistent with the definition of the
optical depth, in the sense that only a fraction of e1 of the
ionizing photons can survive to a distance of the MFP. Using
the derived Il , we apply the updated ionizing background again
to find the updated host island field. After several iterations, we
achieve the converged intensity of the ionizing background and
the host island field of this redshift. Then the bubble barrier is
applied within each host island to find ionized bubbles in
islands, and obtain the ionization field of this snapshot.

Note that the change in the size of a host island is an
integration of the changing rate, which is proportional to the
redshift-dependent ionizing background n zg ( ) (Equation (8)).
We divide the simulated redshift range into small bins, zD , and
approximate the n z nHg ( ) ¯ as a constant between z and z z- D .
We use the converged Il from the previous redshift as the first
trial value for the next redshift.Δz is adaptive, and in each step,
we make sure that Δz is small enough, during which period the

Il does not grow too much, so that the constant approximation
for n z nHg ( ) ¯ is valid. This is guarranteed by requiring Il to
achieve convergence, i.e., the relative error in Il is smaller than
2%, within two times of iteration. Therefore, islandFAST
has to be run downward from the background onset redshift,
and the ionization field for a redshift of interest cannot be
obtained without computing the previous redshift steps.

4. Results

In the default run of islandFAST, we take into account the
effects of both large-scale islands and small-scale absorbers in
regulating the MFP of ionizing photons. Furthermore, we set
the box size of 100 h Mpc1- , and a resolution of 5123 for both
the dark matter field and the ionization field. We have made a
convergence test for islandFAST by running several
simulations of different box scales and resolutions and find
that, in terms of the general reionization process and the main
results shown below, convergence has arrived for our default
simulation.
Taking the ionizing efficiency parameter ζ=20, three

example boxes of the ionization field at three stages of the
late EoR are shown in Figure 1. The black patches are regions
of neutral islands, and the white regions are ionized. From left
to right, we see the evolution of the ionization field: the large
neutral islands shrink, while small islands are being ionized and
losing their identity as time goes by. The bubbles-in-island
effect is obvious throughout the late EoR. Note that the
bubbles-in-island effect does not result in large-scale spherical
annuli of neutral hydrogen, though spheres are used when
calculating the barriers, because the morphology of the neutral
regions is determined by the large-scale structure of the density
fields. Instead, this effect creates small ionized dots inside
islands, or divides a large island into smaller ones, as seen in
the figure. As the mean neutral fraction of the universe
decreases, the morphology of the ionization field becomes less
and less complex, and the shape of the islands gradually
approaches spherical or elliptical. We also find that the late
stage of reionization proceeds quite fast; assuming ζ=20, the
mean neutral fraction drops from ∼0.16 to ∼0.012 between
z=7.0 and z=6.425 in our default run, and the reionization
is completed (defined as x 0.01H I < ) at z∼6.4.
We compare slices of the simulation box in Figure 2 for

ζ=15 (top panels), ζ=30 (middle panels), and ζ=30
without small-scale absorbers (bottom panels). The simulations
are run from the same initial condition. To show the
morphology of large islands as complete as possible in this
figure, we have shifted the box with the periodic boundary
condition, to avoid breaking large islands at boundaries. For
each case, we show three slices with a decreasing mean neutral
fraction from left to right. The slices are chosen to show the
results of the three different cases at about the same mean
neutral fraction (∼0.14, 0.10, 0.013), though there are slight
differences due to the limitation of simulation step size.
The top panels are from the simulation with ζ=15, and the

middle panels are from the simulation with ζ=30, which is
our default run. Comparing the ζ=15 case (top panels) with
the ζ=30 (middle panels), we find that the morphologies of
the ionization fields are quite similar at a similar mean neutral
fraction, insensitive to the ionizing efficiency parameter ζ. This
can be anticipated because in such models the ionization is
determined largely by the density field, though it also has some
weak dependence on the reionization history.
To show the relative impact of large-scale islands and small-

scale absorbers on regulating the reionization process, we also
run a ζ=30 simulation without the small-scale absorbers, in
which the MFP of the ionizing background photons is limited
only by the neutral islands, i.e., mfp Il l= . The results are
shown in the bottom panels of Figure 2. We find that the
morphology of the ionization fields are quite similar between
the simulations with or without small-scale absorbers, as long
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threshold. To ease direct comparison with our analytical model
predictions, here we set our default value of pc=0.16.

With the combined island barrier taking into account the
bubbles-in-island effect, and using an ionizing background
model calibrated by the observed ionizing background at
redshift ∼6, the size distribution of the neutral islands at any
given redshift z when the neutral fraction is below pc can be
obtained. At a given instant, shortly after the neutral islands
become isolated, our model predicts that the size distribution of
the islands has a peak of a few Mpc, depending on the model
parameters. As the redshift decreases, the small islands
disappear rapidly while the large ones shrink, but the
characteristic scale of the islands does not change much if we
constrain the bubbles-in-island fraction to be lower than
pc=0.16. Eventually, all these large-scale neutral islands are
swamped by ionization, only compact neutral regions such as
galaxies or minihalos remain.

3. The IslandFAST Code

The islandFAST code is a semi-numerical code to
reproduce the late stage of the reionization process. It is
developed from the 21cmFAST code (Mesinger et al. 2011),
which is based on the bubble model, but is extended to treat the
late state of reionization by the island model. Compared with
the 21cmFAST, the major differences are that (1) island-
FAST uses a two-step filtering algorithm in generating the
ionization field in order to take the bubbles-in-island effect into
account and (2) the effect of absorption systems is taken into
account and a self-consistent treatment for the ionizing
background is incorporated.

The basic steps of islandFAST are as follows.

1. Create the linear density field with the given power
spectrum and the linear velocity field using the standard
Zel’dovich approximation (Zel’dovich 1970; Efstathiou
et al. 1985; Sirko 2005), just as the first steps in
21cmFAST.

2. Use the 21cmFAST algorithm to generate the ionization
field at a redshift slightly higher than the zback, i.e., update
the density field for the redshift using the first order
perturbation theory, assuming the baryons trace the dark
matter distribution, and filter the bubble field using the
bubble barrier. The halo-finding step is bypassed to speed
up the computation because we are interested in the large-
scale distribution of the neutral islands. We use this
ionization field as the initial condition for the following
steps.

3. For each redshift step below, use the excursion set
approach to generate the host island field with the island
barrier Equation (6).

4. Start with the host island field for a specific redshift,
apply the bubble barrier within each host island, and
generate the bubbles in islands, then we get the final
ionization field for this redshift.

Unlike the 21cmFAST, we skip the final step of assigning
the partial ionization fraction to each neutral pixel because the
collapse fraction computed with the excursion set theory (i.e.,
Equation (3)) is only accurate on large scales and should not be
used on each pixel. When the ionization field is generated for a
given redshift, the percolation threshold pc can be applied to
select those almost neutral and nearly spherical islands, i.e.,
using the neutral fraction threshold of f p1c

cH I
= - in

quantifying the sizes of the islands with the spherical average
method (SAM, McQuinn et al. 2007; Zahn et al. 2007), we
identify the bonafide neutral islands as defined in the island
model. We may also use lower values of the threshold f c

H I, and
then the neutral regions will be attributed to larger and more
sponge-like islands. Comparing between the islands with
different values of f c

H I, one reveals the morphological
information of the islands.
The evolution of ionizing background depends on the

detailed history of reionization, as it depends both on the
photon production rate and the regulation by various absorption
systems, which limit the MFP of the photons. Conversely, it
also greatly affects how the reionization would proceed. A self-
consistent treatment is essential for correct modeling of the
reionization process. Besides the large-scale neutral islands that
block the propagation of the ionizing photons, the most
frequently discussed absorbers are Lyman limit systems, which
have large enough H I column density to remain self-shielded
(e.g., Miralda-Escudé et al. 2000; Furlanetto & Oh 2005;
Bolton & Haehnelt 2013). Minihalos could also block ionizing
photons and contribute to the IGM opacity (Furlanetto &
Oh 2005). However, due to their shallow gravitational potential
and the complex evaporation process, the contribution from the
minihalos is highly uncertain (Barkana & Loeb 1999; Oh &
Haiman 2003; Shapiro et al. 2004; Iliev et al. 2005b; Ciardi
et al. 2006; Yue & Chen 2012). Observationally, the post-
reionization intensity of the ionizing background has been
constrained by the mean transmitted flux in the Lyα forest
(e.g., Wyithe & Bolton 2011; Calverley et al. 2011).
We divide the absorption systems into two categories, the

relatively large neutral islands, and the small-scale absorbers,
which are not resolved in the simulation. We use a semi-
empirical prescription for the contribution to the MFP from
small-scale absorbers and take into account the effects of both
the large-scale islands and the small-scale absorption systems
simultaneously.
Due to the small-scale absorbers as well as the shading of

neutral islands, a neutral region (island) will only be
illuminated by ionizing photons emitted within a distance that
is roughly the MFP of the photon. The comoving number
density of background ionizing photons at redshift z can be
modeled as the integration of escaped ionizing photons that are
emitted from newly collapsed objects and survived to the
distances between the sources and the position under
consideration:
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where l z z, ¢( ) is the physical distance between the source at
redshift z¢ and the redshift z under consideration, and mfpl is the
physical MFP of the background ionizing photons, fH

host
I is the

neutral fraction of the host island field. The factor f1 H
host

I
-( ) is

because only those ionizing photons located outside of the host
islands could contribute to the ionizing background.
The treatment of the MFP in this paper differs slightly from

the analytic model of Xu et al. (2014), where the MFP was
assumed to be from LLS and computed according to the
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Semi-numerical simulation – islandFAST
(Xu et al. 2017)

Credit: Xu et al. (NAOC) & 
Yang Gao (CNIC)
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Fig. 1: The flow diagram of islandFAST for each redshift. The left panel lists the initial fields inherited
from the previous redshift zi, the middle panel illustrates the procedure to find the host islands, and
the right panel is the procedure of finding ionized bubbles inside host islands. When finding the host
islands, we need to consider the inhomogeneous ionizing background, so the island barrier is applied.
When identifying the bubbles in islands, no background ionizing photons would be present inside host
islands, so the bubble barrier is used.

cross-section is �(v) = �0(⌫/⌫0)�↵, in which �0 = 6.3 ⇥ 10�18 cm2 and ⌫0 is the frequency of
hydrogen ionization threshold, the photoionization rate can be written as

�HII(x, z) =
⌘ �0

⌘ + ↵
n̄H⇣

����
df�

coll(x, z)

dt

�����mfp(x, z)(1 + z)3. (13)

We use ⌘ = 5, and ↵ = 3 in this paper.
The inhomogeneous recombinations and anisotropic ionizing background lead to inhomogeneous

shrinking of islands. The change of the island scale �RI(x, z) is therefore also direction-dependent.
Combining Eqs. (4), (12) and (13), the scale change can be written as:

�RI(x, z) =
⌘ + ↵

4 ⌘ n̄H �0

Z zback

z

�HII(x, z)

1 + n̄rec(x, z)

dz

H(z)(1 + z)3
. (14)

Following Wu et al. (2022), we assume that an ionizing background has been set up when the reion-
ization process enters the neutral fiber stage when the mean neutral fraction is x̄HI ⇠ 0.3 (Chen et al.
2019), and set zback correspondingly. The simulation switches to the two-step filtering algorithm with
the island barrier when the reionization approaches the island stage at x̄HI < 0.2.

2.3 Implementation of the new islandFAST

The basic framework of the new islandFAST is similar to the original version, and the main steps for
the island stage are illustrated in Figure 1. The variables appearing in this flow diagram are summarized
in Table 1.

The main improvements of this work are the following:

1. The MHR00 distribution is adopted for the gas density distribution of small-scale absorbers.
Based on this model, inhomogeneous recombinations and the position-dependent MFP are self-
consistently calculated along with the inhomogeneous ionizing background.

Zhu, YX et al. 2023, RAA

第 2章 再电离物理模型及其改进

图 2-2 随机轨迹与电离、中性区域的判定示意图：左侧图 (a)表示电离区的寻找过程，对
应为随机轨迹由下至上第一次跨越 bubble barrier；而图 (b)表示中性区及其内部小电
离区的寻找过程，分别对应为随机轨迹第一次自上而下穿越 island barrier 以及穿越
island barrier之后第一次由下至上穿越 bubble barrier的过程。

Figure 2-2 The Random Trajectory for Determining of the Ionization or Neutral Regions:
the sub-figure (a) shows the process of finding ionized regions, which correspond to the
first up-crossing of the bubble barrier; the sub-figure (b) shows the process of finding
neutral regions and small ionized regions inside them, which corresponding to the first
down-crossing of the island barrier and then first up-crossing of the bubble barrier.

移下的平均坍缩率 |d𝑓 ∞coll(𝑧′)d(𝑧′) |来简化背景电离光子的产生，此外还需考虑一定的
电离效率 ζ，以及经过一定距离的衰减因素，故而背景电离光子的数密度可以表
示为：

𝑛𝛾(𝑧) = ∫𝑧 ̄𝑛H |d𝑓 ∞coll (𝑧′)d𝑧′ | 𝜁 exp [−𝑙 (𝑧, 𝑧′)𝜆mfp(𝑧) ] (1 − 𝑓 hostHI )d𝑧′ (2-5)

其中 𝑙 (𝑧, 𝑧′) 表示位于红移 𝑧′ 处的源与当前考虑的红移值 z 的物理距离大小；
而 𝜆mfp 表示电离光子的平均自由程，其值由大尺度中性岛所导致的平均自由
程 𝜆HI 和小尺度吸收体所导致的平均自由程 𝜆abs 两部分所贡献，也即有 𝜆−1mfp =𝜆−1HI + 𝜆−1abs。对于 𝜆HI 的部分，是由大尺度中性岛的平均距离 (Xu等, 2017)所决
定的。而对于 𝜆abs的计算，这里需要声明的是，旧版模型中采用的复合数为一常
量，并不随空间位置和红移变化，因此在复合的层面是没有考虑小尺度吸收体的
复合贡献。对于这里小尺度吸收体所贡献的平均自由程 𝜆abs 的处理，直接采用
Songalia和 Cowie等人提出的经验公式 (Songaila等, 2010)进行直接计算。考虑
到只有电离的区域存在背景光子，而中性区包括中性岛内部都没有背景光子的
存在，引入因子 𝑓 hostHI 表示中性岛所占据的体积分数。进而可以通过背景光通量
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islandFAST vs. radiative transfer simulations

BTCL simulation. Although with different treatment of small-
scale absorbers, the large-scale morphology of the ionization
field is largely determined by the large-scale density field.
However, we note that the result of BTCL simulation cannot be
regarded as “ground truth” either because it neglected
additional clumping and self-shielding of small-scale absor-
bers, and snapshots at lower redshifts (x 0.15H I < ) are not
available. We plan to make further tests of our algorithm in
the future, note, however, that to make a reliable test, the
radiative transfer simulation should cover a box region with at
least side 100 Mpc h 12 - (Iliev et al. 2014), and at the same
time resolve small scales down to 10 kpc~ , in order to
correctly account for recombinations.

4.2. Ionizing Background

While generating the ionization field, islandFAST
simultaneously predicts the evolution of the ionizing back-
ground over the redshift range simulated. The solid and dashed
curves in Figure 7 show the H I photoionization rate, H IG , as a
function of redshift predicted by the simulation with ζ=20
and ζ=15 respectively. The curves display rapid increase
below the background onset redshift, indicating quick growth
of the intensity of the ionizing background during the late EoR.
After that, the growth of the ionizing background slows down
as the reionization approaching the completion. We find that
the intensity of the ionizing background and the timing of its
rapid growth depends significantly on the adopted ionizing
efficiency parameter ζ. A higher ionizing efficiency would
result in a much higher intensity and earlier growth of the
ionizing background.

To show the effect of small-scale dense absorbers in
regulating the ionizing background, in Figure 7, we also plot
with the dotted–dashed line the evolution of H IG predicted by
the simulation without small-scale absorbers for ζ=20. The
intensity of the ionizing background is boosted by an order of
magnitude in the absence of small absorbers, and the growth of
the ionizing background becomes much faster, which results in

the rapid completion of the reionization process. Therefore, we
conclude that the small-scale absorbers have played a dominant
role in regulating the level of the ionizing background, and they
delay and prolong the reionization process significantly.
The solid lines in Figure 8 show the evolution of the MFP of

the background ionizing photons derived from islandFAST,
with the thick line from the simulation with ζ=20 and the thin
line from the simulation with ζ=15. The evolution of the
MFP shows similar trends as the growth in the intensity of the
ionzing background, and the timing of the growth is also

Figure 6. Size distributions of neutral islands obtained with the mean-free path algorithm (left panel), and those obtained with the spherical average method using
f 0.84c
H I = (right panel). The black solid, blue dashed, and red dotted–dashed curves are for the three reionization stages with the mean neutral fractions as indicated
in the legend, and the ionizing efficiency parameter adopted is ζ=20. For comparison, we also plot the size distribution from a radiation-hydrodynamic simulation by
Battaglia et al. (2013b), with the green solid line denoted by “BTCL,” at the mean neutral fraction of 0.15.

Figure 7. Evolution of the ionizing background. The solid and dashed curves
show the H I photoionization rate H IG as a function of redshift taking into
account the small-scale absorbers. The solid curve is from the simulations with
ζ=20, and the dashed curve is from the one with ζ=15. The dotted–dashed
curve shows the evolution of H IG from the simulation without small-scale
absorbers, and ζ=20.
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• THE 21 CM POWER SPECTRUM

H I bias in the EoR 5743

Figure 2. The neutral fraction (upper panel) and the 21 cm power spectra
(lower panel) predicted by the islandFAST (the black lines) as compared
with the one predicted by Battaglia et al. (2013; the green line, denoted by
‘Trac-100’ in the legend) and the ones from Dixon et al. (2016; the magenta
lines, denoted by ‘Iliev-244’). The mean neutral fraction of each line is
indicated in the legend.

the early, intermediate, and late stages of reionization, respectively,
and in the middle and bottom panels the corresponding curves are
plotted with the same colours as the top panel.

The power spectrum of the DM density fluctuations steadily
increase as the redshift decreases, while keeping the shape almost
unchanged on the scales discussed here. By contrast, neither the
redshift evolution nor the scale dependence of the neutral fraction
power spectrum is monotonic. The neutral fraction power spectrum
first increases during the early stage of reionization, and then
decreases during the late stage of reionization. The 21cm power
spectrum, however, keeps increasing with decreasing redshift until
xIGM

H I ∼ 0.01. Note here we are referring to the dimensionless power,
and part of the increase of the power comes from the decreasing
mean 21cm brightness temperature as more regions are ionized. In
the late stage of reionization, there is a bump around k ∼ 0.1 h Mpc−1

on both of them. This scale is close to the typical ionized bubble size,
and the H I fluctuations at smaller scales are somewhat suppressed
by reionization process.

The cross-power spectrum between the neutral fraction field
and the DM density field is shown in Fig. 4. We use the dashed
lines to mark the negative power, while the solid lines refer to

Figure 3. The power spectra of dark matter (top panel), the H I neutral
fraction fH I (middle panel), and the 21 cm brightness temperature (bottom
panel). The three curves are taken at z = 10.0, 7.88, and 6.45, corresponding
to IGM mean neutral fraction x̄IGM

H I = 0.92, 0.53, and 0.011, respectively.

positive power. As seen in this figure, during most of the EoR
stages, the neutral fraction field is anticorrelated with the DM
density field, resulting in negative cross-power spectrum. As the
reionization proceeds, the amplitude of the large-scale cross-power
spectrum increases during the early stage of reionization, reaches its
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islandFAST vs. 21cmFAST

the end of reionization, the inhomogeneous model predicts
flatter 21 cm power spectra than the homogeneous model.

4. Comparison of Models

From the above analysis, it is seen that incorporating
inhomogeneous recombinations and an inhomogeneous ioniz-
ing background in the model can result in morphological
change in the ionization field during the island stage. On the
other hand, the basic assumption on the ionization topology
and the detailed algorithm in the modeling also affect the
ionization field morphology, even though the global ionization
history could be similar. The islandFAST improves the
performance of the excursion set theory for the late EoR by
adopting the topology of isolated islands, which is more
appropriate for the island stage of reionization. The corresp-
onding filtering algorithm for the ionization field incorporates
the direct interaction between the inhomogeneous ionizing

background and the anisotropic shrinking of the neutral islands.
The effect of an inhomogeneous ionizing background is not
limited to a modulation on the spatial-dependent recombination
rate as in 21cmFAST. In addition, by calculating also the
collapse fraction smoothed on scales of MFP, the computation
of ionizing background in islandFAST is decoupled from
the filtering scale R, and it is more physical to count only the
ionizing photons within a distance of λmfp. With these
improvements, there are apparent changes in the resulting
ionization field morphology at the end of EoR, compared with
the results from either the earlier version of islandFAST
(homogeneous model) or the 21cmFAST.
Here we present the difference in the ionization field by

comparing the results from the new islandFASTwith those from
21cmFAST. Both simulations have the same model parameters for
the ionizing sources, the distribution of small-scale absorbers
(recombinations), and the inhomogeneous ionizing background,

Figure 9. Size distribution of neutral islands from islandFAST (solid lines) and 21cmFAST (dashed lines) at four mean neutral fractions ( ¯ =x 0.15, 0.10, 0.05H I

and 0.01). The blue, black, and red lines are for ζ = 20, 25, 30 respectively. Here we use the fiducial value }= ´M M5 10min
8 .
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and the ionization histories are all consistent with observations.
Figure 8 shows slices of the ionization field from the two models at
three different mean neutral fractions, with the upper panels for
islandFAST and the lower panels for 21cmFAST respectively.
The fiducial parameter set of { z = = ´M M25, 5 10min

8 } is
adopted. It is seen that the morphology of the ionization fields are
very similar between the two models until the epoch approaching
the end of reionization. At ¯ ~x 0.01H I , the 21cmFAST predicts a
lower number of relatively larger islands as compared to the
islandFAST, although both models include inhomogeneous
recombinations and ionizing background.

The size distributions of neutral islands at four different
ionization fractions during the late EoR are shown in Figure 9.
Note that this is a relative size distribution plot, and the total
number density and volume fraction of the neutral islands
decrease with the decreasing total ionization fraction which are
not shown in this plot. The dashed lines are the results from

21cmFAST and the solid lines are from islandFAST,
different colors correspond to different parameter values as
indicated in the legends.
As noted in earlier papers (see Xu et al. 2017; Wu et al.

2022), there is little evolution in the island size distribution for
the 21cmFAST result, while in islandFAST, the island size
distribution starts to evolve to smaller scales at ¯ x 0.05H I if
there are numerous small-scale absorbers. For the parameters
adopted here, which are consistent with existing observations,
the typical size of islands is of the order of 10 comoving Mpc
for 21cmFAST throughout the late EoR. For islandFAST,
the island size is also about 10 comoving Mpc when
¯ x 10%H I . When ¯ ~x 0.01H I , however, the neutral islands
fragment into much smaller ones in the island model, and the
typical island size decreases to ∼5 comoving Mpc. This agrees
with our intuition that the ionizing background and the
“bubbles-in-island” effect help to break the last-remaining

Figure 10. The 21 cm power spectra with statistical errors from islandFAST (solid lines) and 21cmFAST (dashed lines) at four mean neutral fractions
( ¯ =x 0.15, 0.10, 0.05H I and 0.01) for the same parameters in the last figure. In each plot, the gray shade shows the root-mean-square deviation from 10 realizations of
the fiducial model.
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BUBBLE MODEL VS. ISLAND MODEL

and nrec the typical number of times a hydrogen atom has
recombined. These parameters all depend on the uncertain
source properties and can be functions of time; we will con-
sider several possible values for ! below.

Because the mass function is steep at high redshifts, the re-
sulting H ii regions are quite small (see the discussion of Fig. 4
below). This conflicts with even the most basic pictures from
simulations (Sokasian et al. 2003a; Ciardi et al. 2003). ‘‘Typi-
cal’’ ionized regions in simulations extend to several comoving
megaparsecs in radius even early in overlap, many times larger
than Strömgren spheres around individual galaxies. The reason
is simply that the Strömgren spheres of nearby protogalaxies
add, so that biased regions tend to host surprisingly large ion-
ized regions (Barkana & Loeb 2004). For example, Figure 6 of
Sokasian et al. (2003a) shows that H ii regions tend to grow
around the largest clusters of sources, in this case primarily
along filaments. In fact, the radius of the H ii regions quickly
exceeds the correlation length of galaxies, so it is difficult to see
how to construct a model for the bubbles based on ‘‘local’’
galaxy properties.

Therefore, in order to describe the neutral fraction field, xH,
we need to take into account large-scale fluctuations in the
density field. Here we describe a simple way to do so. We again
begin with the Ansatz of equation (1) and ask whether an iso-
lated region of mass m is fully ionized or not. Because it is
isolated, the region must contain enough mass in luminous
sources to ionize all of its hydrogen atoms; thus we can impose
a condition on the collapse fraction:

fcoll ! fx " !#1: ð2Þ

In the extended Press-Schechter model (Bond et al. 1991;
Lacey & Cole 1993), the collapse fraction is a deterministic
function of the mean linear overdensity "m of our region:

fcoll ¼ erfc
"c(z)# "mffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2½#2
min # #2(m)(

p
" #

; ð3Þ

where #2(m) is the variance of density fluctuations on the scale
m, #2

min ¼ #2(mmin), "c(z) is the critical density for collapse,
and mmin is the minimum mass of an ionizing source.7 Unless
otherwise specified, we will take mmin to be the mass corre-
sponding to a virial temperature of 104 K, at which atomic
hydrogen line cooling becomes efficient. Note that this ex-
pression assumes that the mass fluctuations are Gaussian on the
scale m; the formula thus begins to break down when we
consider mass scales close to the typical size of collapsed
objects. Armed with this result, we can rewrite condition (2) as
a constraint on the density:

"m ! "x(m; z) " "c(z)#
ffiffiffi
2

p
K(!)½#2

min # #2(m)(1=2; ð4Þ

where K(!) ¼ erf #1(1# !#1). We see that regions with suffi-
ciently large overdensities will be able to ‘‘self-ionize.’’

In order to compute the size distribution of ionized regions
wemust overcome two additional, but related, difficulties. First,
we apparently must settle on an appropriate smoothing scale m.
Second, we must take into account ionizing photons from

galaxies outside of the region under consideration. In other
words, an underdense voidm1 may be ionized by a neighboring
cluster of sources in an overdense region m2 provided that the
cluster has enough ‘‘extra’’ ionizing photons. But notice that
we can solve the latter problem by changing our smoothing
scale to m1 þ m2: then the net collapse fraction in this region
would be large enough to ‘‘self-ionize.’’

This suggests that we wish to assign a point in space to an
ionized region of mass m if and only if the scale m is the
largest scale for which condition (4) is fulfilled. If this pro-
cedure can be done self-consistently, we will not need to ar-
bitrarily choose a smoothing scale. Our problem is analogous
to constructing the halo mass function through the excursion
set formalism (Bond et al. 1991): starting at m ¼ 1, we move
to smaller scales surrounding the point of interest and compute
the smoothed density field as we go along. Once "m ¼ "x(m; z),
we have identified a region with enough sources to ionize
itself, and we assign these points to objects of the appropri-
ate mass. To obtain the mass function, we need to find the
distribution of first up-crossings above the curve described
by "x. (We are concerned only with the first-crossing distri-
bution because those trajectories that later wander below the
barrier correspond to regions ionized by sources in neighboring
volumes.) Again, we need not choose a smoothing scale; each
point is assigned to an object of mass m based on its own
behavior.

The solid lines in Figure 1 show the barrier "x(m; z) for
several redshifts as a function of #2(m). In each case the curves
end at #2(!mmin); this is the minimum size of an H ii region in
our formalism. The figure shows an important difference be-
tween our problem and the excursion set formalism applied to
the halo mass function. In the latter case, the barrier "c(z) is
independent of mass. Clearly this would not be a good approx-
imation in our case. Unfortunately, there is no general method
for constructing the first-crossing distribution above a barrier
of arbitrary shape (but see Sheth & Tormen [2002] for an

7 Note that in eq. (3) the growth of structure is encoded in the time evo-
lution of "c(z), with #2(m) constant in time. We adopt this convention in the
rest of the paper.

Fig. 1.—Density threshold "x(#2; z) at several different redshifts, assuming
! ¼ 40. The curves are for z ¼ 20, 16, and 12, from top to bottom. Within
each set, the solid curve is the true "x(m; z) and the dashed line is the fit
B(m; z).
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Fig. 10.— The basic island barriers (green curves), the percolation threshold induced barriers (red

curves), and the e�ective island barriers (black curves) for our fiducial model. The solid, dashed

and dot-dashed curves are for redshifts 6.9, 6.7 and 6.5 from top to bottom respectively.

from cosmological simulations. However, the spatial distribution of ionized bubbles and neutral

islands are much less filamentary than the gravitationally clustered dark matter or galaxies. As

the ionization field follows the density field (Battaglia et al. 2012a), which is almost Gaussian

on large scales (Planck Collaboration et al. 2013b), here we use the percolation threshold for a

gaussian random field of pc = 0.16 (Klypin & Shandarin 1993), below which we may assume that

the bubbles-in-island does not percolate through the whole island.

The problem of percolation appears in several stages of reionization. At the early stage of

reionization, the filling factor of ionized bubbles increases as the bubble model predicted. Once

the bubble filling factor becomes larger than the percolation threshold pc, the ionized bubbles are

no longer isolated, and the predictions made from the bubble model are not accurate anymore.

Therefore, the threshold pc sets a critical redshift zBp, below which the bubble model may not be

reliable. Similarly, the model of neutral islands can make accurate predictions only below a certain

redshift zIp, when the island filling factor is below pc. The ionizing background was set up after the

ionized bubbles percolated but before the islands were all isolated, so zBp > zback > zIp. Finally,

the percolation threshold may also be applied to the bubbles-in-island fraction. An island with a

high value of qB may not qualify as a whole neutral island, and the bubbles inside it are probably

not isolated regions.

It may be desirable to consider also the distribution of those bona fide neutral islands, for

which the bubble fraction is below the percolation threshold, i.e. after excluding those islands
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fields from broadband imaging. Figure 13 shows the size
distributions with brightness temperature threshold of 6 σT for
narrowband imaging (top panels) and those with 3 σT for
broadband imaging (bottom panels). It is found that using
narrowband imaging with B= 0.1 MHz, we will be able to
extract the intrinsic island scale using a brightness temperature

threshold of 6 σT. A lower threshold will overestimate the
island scales. Using the broadband imaging with B= 1MHz,
almost all of the noises would be eliminated with a threshold
value of 3 σT. The reconstructed distributions are very similar
to the size distributions shown in the bottom panels in
Figure 12, though the extracted characteristic scales are a bit

Figure 11. The δTb slices (top plots) and their mock images as observed by the SKA1-Low core array (bottom plots). All slices are 1 Gpc on a side in co-moving scale.
The slices in the left column are 1.67 Mpc thick, and the observing bandwidth is 0.1 MHz, and the slices in the right column are 15 Mpc thick, corresponding to an
observing bandwidth of 1 MHz. In each plot, the top, middle, and bottom panels are for the islandFAST-noSSA, islandFAST-SC, and islandFAST-RS
models, respectively, and the three columns correspond to reionization stages with mean neutral fractions of ¯ =x 0.16H I , 0.10, and 0.01, from left to right,
respectively.
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1. islandFAST–noSSA: extremely high UVB

• THE IONIZING BACKGROUND (UVB) REGULATED BY SSAS & ISLANDS

The small-scale absorbers (SSA) Models

islandFAST-RS: Recent observations have favored a rapid
evolution of the MFP near the end of reionization (e.g.,
Becker et al. 2021), implying significant modulation of the
MFP by the large-scale ionization field. The island-
FAST-RS model adopts the neutral-fraction-dependent
λmfp given by the high-resolution Aurora radiation-
hydrodynamical simulations for the EoR (Figure 1 in
Rahmati & Schaye 2018). We interpolate to calculate the
MFP for a derived neutral fraction from our simulation,
and iterate to achieve a consistent ionization field and the
MFP for each redshift step. As shown below, this model
corresponds to a low level of the ionizing background and
a short MFP.

Our simulation box has a co-moving size of 1 Gpc a side and
6003 cells. For each of the SSA models, we run two sets of

simulations. One set adopts { }x = =T10, 10 Kmin
vir 4 corresp-

onding to early and low-mass ionizing sources, and the other
adopts{ }x = = ´T30, 5 10 Kmin

vir 4 corresponding to late and
high-mass ionizing sources. As a reference, we also run the
21cmFAST for the same sets of parameters. In the following
analyses, the fiducial source parameters for 21cmFAST,
islandFAST-noSSA, and islandFAST-SC models are
{ }x = =T10, 10 Kmin

vir 4 , while the fiducial parameters for the
islandFAST-RS model are { }x = = ´T30, 5 10 Kmin

vir 4 ,
chosen to be consistent with various observations. The
evolutions of the volume neutral fraction x̄H I from the three
islandFAST models, and that from 21cmFAST, are shown
in Figure 1. Also shown are the observational constraints from
various observations as indicated in the legend and the caption.
The reionization processes predicted by the 21cmFAST,
islandFAST-noSSA, islandFAST-SC, and island-
FAST-RS end at redshifts 6.02, 6.00, 5.74, and 5.30,
respectively. The corresponding Thompson optical depths are
0.0545, 0.0543, 0.0541, and 0.0557, respectively, all consistent
with the latest Planck results (Planck Collaboration et al. 2020).
We note that the reionization history of the late EoR based on
island topology does not connect smoothly with the history of
early EoR simulated assuming bubble-topology. This is an
intrinsic defect of the simulation in describing the complex
percolation process. However, as will be shown below (in
Section 3.1), when compared at the same mean neutral
fractions, the islandFAST-noSSA and 21cmFAST predict
consistent island statistics, so this discontinuity at the
topological transition would not affect the results on the island
statistics. We reserve the improvement on the simulation
strategy for the mid-EoR to future works. Here we confirm the
previous result that the presence of SSAs prolongs the
reionization process.
Figure 2 shows the evolution of the MFP for ionizing

photons (left panel) and the photoionization rate (right panel)
predicted by the three SSA models. In the case of no SSA, the
MFP is entirely limited by neutral islands, and as expected, the
MFP grows rapidly as the islands being ionized (blue solid
line) and the ionizing background also increase rapidly. In the
presence of SSAs, the propagation of ionizing photons is
effectively blocked, resulting in a significant reduction of the

Figure 1. The ionization history predicted by the four semi-numerical
simulations (solid lines) as compared to various observational data. The
observational data include constraints with the optical depth measurement from
Planck (Planck Collaboration et al. 2020), the neutral IGM damping wing on
high-z QSO spectra (Davies et al. 2018), the Lyα equivalent width distribution
of Lyman-break galaxies (Mason et al. 2018, 2019; Jung et al. 2020), the
clustering of Lyα emitters (Sobacchi & Mesinger 2015), the Lyα fraction
(Mesinger et al. 2015), and the dark pixel statistics of high-z QSO spectra
(McGreer et al. 2015), as indicated in the legend.

Figure 2. Left panel: the evolution of the MFP for ionizing photons. The blue, green, and black solid lines refer to the evolutions from islandFAST-noSSA,
islandFAST-SC, and islandFAST-RS models, respectively. The magenta dashed line shows the MFP extrapolated from the fitting formula by Worseck et al.
(2014), while the cyan dashed line indicates the MFP due to SSAs only, extrapolated from the fitting formula by Songaila & Cowie (2010). The dots with error bars
show the recent MFP measurement by Becker et al. (2021). Right panel: the H I photoionization rate from the three simulations, compared with measurements from
Wyithe & Bolton (2011), Calverley et al. (2011), and D’Aloisio et al. (2018).
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line) and the ionizing background also increase rapidly. In the
presence of SSAs, the propagation of ionizing photons is
effectively blocked, resulting in a significant reduction of the
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hydrogen. Here Nback is the number of background ionizing
photons consumed by the region under consideration, which
can be written as
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where n̄b is the mean co-moving baryon number density, Ri is
the initial island scale corresponding to the mass scale M when
the ionizing background is just set up, and Rf is final scale of
the island at the redshift under consideration. The change in the
island scale is due to the ionization by the ionizing background;
thus, we have
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where F(z) is the physical photon number flux of the ionizing
background, zback is the redshift at which a global ionizing
background is set up, and H(z) is the Hubble parameter. The
number density of background ionizing photons can be written
as (Xu et al. 2017)
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where ( )¢l z z, is the physical distance between the source at ¢z
and the redshift z under consideration, and fH

host
I is the volume

fraction of host islands. The ionizing photon number flux F(z)
in Equation (4) is then computed with the relation

( ) ( )( )= +gF z n z z c1 43 . Note that in islandFAST, the
MFP is implemented by its original definition of attenuating
ionizing photons, but not a sharp boundary for the filtering
scale, or a sharp cut-off for the traveling distance of ionizing
photons, as in previous simulations (e.g., Alvarez & Abel 2012;
Iliev et al. 2014; Shukla et al. 2016). In this work, ξ is defined
in terms of Nγ/H, and we assume the same production rate of
ionizing photons per He atom in stars as that per H atom in
stars, i.e., Nγ/He= Nγ/H, so Equation (2) implicitly includes the
contribution and consumption of ionizing photons by helium
atoms, and the factor mH/XH in the second term in Equation (2)
cancels out the same factor when computing n̄H in
Equation (5).

For the island stage, the islandFAST takes a two-step
filtering approach; it first finds host islands by identifying first-
down-crossings with respect to the island barrier including the
contribution from an ionizing background, and then identifies
bubbles-in-island by applying a second filtering step within
each host island using the bubble barrier. With an input model
of SSAs, the islandFAST self-consistently computes the
effective MFP limited by both the large-scale neutral islands
and the SSAs, and derives the evolution of the ionizing
background simultaneously with the ionization field in adaptive
redshift steps.

In the original version of islandFAST (Xu et al. 2017), the
ionizing background was assumed to be present only in the
island stage. However, the percolation process begins as early
as when the universe was only∼30% ionized (Furlanetto &
Oh 2016; Chen et al. 2019), and the ionizing background is

expected to have been gradually set up since then, though it
may have fluctuated significantly during the percolation
process. In this work, we assume that a relatively uniform
ionizing background has been present since the “neutral fibers”
stage (i.e., when the neutral regions thinned into filamentary
structures; Chen et al. 2019), and zback is set by the time when
the mean neutral fraction is 30%.
We incorporate three different models for the SSAs, as

detailed below. As shown in previous works, more abundant
SSAs result in a more delayed and prolonged reionization
process (e.g., Alvarez & Abel 2012; Sobacchi &
Mesinger 2014). In addition to the SSA models, two key
parameters determine the process of reionization, i.e., the
minimum mass Mmin, or equivalently the minimum virial
temperature Tmin

vir , of halos that contribute ionizing photons, and
the ionizing efficiency parameter ξ. The former regulates the
time at which the reionization begins in earnest, while the latter
determines the speed of the reionization process. By tuning
these two parameters, we control the reionization processes
with different SSA models to be consistent with various
observations.

2.1. The Models for SSAs

During the island stage, the MFP of ionizing photons is
limited not only by large-scale underdense islands but also by
small-scale overdense absorbers. The effective MFP of ionizing
photons λmfp is given by

( )l l l= +- - - , 6mfp
1

I
1

abs
1

where λI is the MFP limited by large-scale underdense islands,
and λabs is the MFP due to small-scale overdense absorbers. In
the simulation, λI is computed on-the-fly using the MFP
algorithm (Mesinger & Furlanetto 2007), which is taken as the
average length of random vectors starting from an ionized pixel
reaching an edge of a neutral island. Because of the relatively
low column density of Lyα forest systems and the relative
rarity of damped Lyman-alpha systems, the LLSs are the
dominant contributor to the IGM opacity, reducing the MFP of
ionizing photons, and weakening the ionizing background
(Furlanetto & Oh 2005; Shukla et al. 2016). Here the parameter
λabs implicitly includes the contributions from all kinds of
unresolved absorbers, i.e., the SSAs.
We consider the following three models of SSAs corresp-

onding to different levels of the ionizing background.

islandFAST-noSSA: In the extreme case of no SSA, the MFP of
ionizing photons is completely determined by the morph-
ology of large-scale neutral islands, i.e., λmfp= λI, the
ionization background is large in this case. Though
unrealistic, we can use this case for comparison.

islandFAST-SC: The number density of LLSs was observed up
to redshift ∼6 (Songaila & Cowie 2010). In the second
model, we adopt the evolution of the MFP limited by
SSAs extrapolated from the fitting formula provided by
Songaila & Cowie (2010), expressed as:
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This model corresponds to a relatively high level of the
ionizing background, or equivalently a moderate MFP.
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where n̄b is the mean co-moving baryon number density, Ri is
the initial island scale corresponding to the mass scale M when
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the island at the redshift under consideration. The change in the
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where F(z) is the physical photon number flux of the ionizing
background, zback is the redshift at which a global ionizing
background is set up, and H(z) is the Hubble parameter. The
number density of background ionizing photons can be written
as (Xu et al. 2017)
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where ( )¢l z z, is the physical distance between the source at ¢z
and the redshift z under consideration, and fH

host
I is the volume

fraction of host islands. The ionizing photon number flux F(z)
in Equation (4) is then computed with the relation

( ) ( )( )= +gF z n z z c1 43 . Note that in islandFAST, the
MFP is implemented by its original definition of attenuating
ionizing photons, but not a sharp boundary for the filtering
scale, or a sharp cut-off for the traveling distance of ionizing
photons, as in previous simulations (e.g., Alvarez & Abel 2012;
Iliev et al. 2014; Shukla et al. 2016). In this work, ξ is defined
in terms of Nγ/H, and we assume the same production rate of
ionizing photons per He atom in stars as that per H atom in
stars, i.e., Nγ/He= Nγ/H, so Equation (2) implicitly includes the
contribution and consumption of ionizing photons by helium
atoms, and the factor mH/XH in the second term in Equation (2)
cancels out the same factor when computing n̄H in
Equation (5).

For the island stage, the islandFAST takes a two-step
filtering approach; it first finds host islands by identifying first-
down-crossings with respect to the island barrier including the
contribution from an ionizing background, and then identifies
bubbles-in-island by applying a second filtering step within
each host island using the bubble barrier. With an input model
of SSAs, the islandFAST self-consistently computes the
effective MFP limited by both the large-scale neutral islands
and the SSAs, and derives the evolution of the ionizing
background simultaneously with the ionization field in adaptive
redshift steps.

In the original version of islandFAST (Xu et al. 2017), the
ionizing background was assumed to be present only in the
island stage. However, the percolation process begins as early
as when the universe was only∼30% ionized (Furlanetto &
Oh 2016; Chen et al. 2019), and the ionizing background is

expected to have been gradually set up since then, though it
may have fluctuated significantly during the percolation
process. In this work, we assume that a relatively uniform
ionizing background has been present since the “neutral fibers”
stage (i.e., when the neutral regions thinned into filamentary
structures; Chen et al. 2019), and zback is set by the time when
the mean neutral fraction is 30%.
We incorporate three different models for the SSAs, as

detailed below. As shown in previous works, more abundant
SSAs result in a more delayed and prolonged reionization
process (e.g., Alvarez & Abel 2012; Sobacchi &
Mesinger 2014). In addition to the SSA models, two key
parameters determine the process of reionization, i.e., the
minimum mass Mmin, or equivalently the minimum virial
temperature Tmin

vir , of halos that contribute ionizing photons, and
the ionizing efficiency parameter ξ. The former regulates the
time at which the reionization begins in earnest, while the latter
determines the speed of the reionization process. By tuning
these two parameters, we control the reionization processes
with different SSA models to be consistent with various
observations.

2.1. The Models for SSAs

During the island stage, the MFP of ionizing photons is
limited not only by large-scale underdense islands but also by
small-scale overdense absorbers. The effective MFP of ionizing
photons λmfp is given by
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where λI is the MFP limited by large-scale underdense islands,
and λabs is the MFP due to small-scale overdense absorbers. In
the simulation, λI is computed on-the-fly using the MFP
algorithm (Mesinger & Furlanetto 2007), which is taken as the
average length of random vectors starting from an ionized pixel
reaching an edge of a neutral island. Because of the relatively
low column density of Lyα forest systems and the relative
rarity of damped Lyman-alpha systems, the LLSs are the
dominant contributor to the IGM opacity, reducing the MFP of
ionizing photons, and weakening the ionizing background
(Furlanetto & Oh 2005; Shukla et al. 2016). Here the parameter
λabs implicitly includes the contributions from all kinds of
unresolved absorbers, i.e., the SSAs.
We consider the following three models of SSAs corresp-

onding to different levels of the ionizing background.

islandFAST-noSSA: In the extreme case of no SSA, the MFP of
ionizing photons is completely determined by the morph-
ology of large-scale neutral islands, i.e., λmfp= λI, the
ionization background is large in this case. Though
unrealistic, we can use this case for comparison.

islandFAST-SC: The number density of LLSs was observed up
to redshift ∼6 (Songaila & Cowie 2010). In the second
model, we adopt the evolution of the MFP limited by
SSAs extrapolated from the fitting formula provided by
Songaila & Cowie (2010), expressed as:
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where n̄b is the mean co-moving baryon number density, Ri is
the initial island scale corresponding to the mass scale M when
the ionizing background is just set up, and Rf is final scale of
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where F(z) is the physical photon number flux of the ionizing
background, zback is the redshift at which a global ionizing
background is set up, and H(z) is the Hubble parameter. The
number density of background ionizing photons can be written
as (Xu et al. 2017)
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fraction of host islands. The ionizing photon number flux F(z)
in Equation (4) is then computed with the relation

( ) ( )( )= +gF z n z z c1 43 . Note that in islandFAST, the
MFP is implemented by its original definition of attenuating
ionizing photons, but not a sharp boundary for the filtering
scale, or a sharp cut-off for the traveling distance of ionizing
photons, as in previous simulations (e.g., Alvarez & Abel 2012;
Iliev et al. 2014; Shukla et al. 2016). In this work, ξ is defined
in terms of Nγ/H, and we assume the same production rate of
ionizing photons per He atom in stars as that per H atom in
stars, i.e., Nγ/He= Nγ/H, so Equation (2) implicitly includes the
contribution and consumption of ionizing photons by helium
atoms, and the factor mH/XH in the second term in Equation (2)
cancels out the same factor when computing n̄H in
Equation (5).

For the island stage, the islandFAST takes a two-step
filtering approach; it first finds host islands by identifying first-
down-crossings with respect to the island barrier including the
contribution from an ionizing background, and then identifies
bubbles-in-island by applying a second filtering step within
each host island using the bubble barrier. With an input model
of SSAs, the islandFAST self-consistently computes the
effective MFP limited by both the large-scale neutral islands
and the SSAs, and derives the evolution of the ionizing
background simultaneously with the ionization field in adaptive
redshift steps.

In the original version of islandFAST (Xu et al. 2017), the
ionizing background was assumed to be present only in the
island stage. However, the percolation process begins as early
as when the universe was only∼30% ionized (Furlanetto &
Oh 2016; Chen et al. 2019), and the ionizing background is

expected to have been gradually set up since then, though it
may have fluctuated significantly during the percolation
process. In this work, we assume that a relatively uniform
ionizing background has been present since the “neutral fibers”
stage (i.e., when the neutral regions thinned into filamentary
structures; Chen et al. 2019), and zback is set by the time when
the mean neutral fraction is 30%.
We incorporate three different models for the SSAs, as

detailed below. As shown in previous works, more abundant
SSAs result in a more delayed and prolonged reionization
process (e.g., Alvarez & Abel 2012; Sobacchi &
Mesinger 2014). In addition to the SSA models, two key
parameters determine the process of reionization, i.e., the
minimum mass Mmin, or equivalently the minimum virial
temperature Tmin

vir , of halos that contribute ionizing photons, and
the ionizing efficiency parameter ξ. The former regulates the
time at which the reionization begins in earnest, while the latter
determines the speed of the reionization process. By tuning
these two parameters, we control the reionization processes
with different SSA models to be consistent with various
observations.

2.1. The Models for SSAs

During the island stage, the MFP of ionizing photons is
limited not only by large-scale underdense islands but also by
small-scale overdense absorbers. The effective MFP of ionizing
photons λmfp is given by
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where λI is the MFP limited by large-scale underdense islands,
and λabs is the MFP due to small-scale overdense absorbers. In
the simulation, λI is computed on-the-fly using the MFP
algorithm (Mesinger & Furlanetto 2007), which is taken as the
average length of random vectors starting from an ionized pixel
reaching an edge of a neutral island. Because of the relatively
low column density of Lyα forest systems and the relative
rarity of damped Lyman-alpha systems, the LLSs are the
dominant contributor to the IGM opacity, reducing the MFP of
ionizing photons, and weakening the ionizing background
(Furlanetto & Oh 2005; Shukla et al. 2016). Here the parameter
λabs implicitly includes the contributions from all kinds of
unresolved absorbers, i.e., the SSAs.
We consider the following three models of SSAs corresp-

onding to different levels of the ionizing background.

islandFAST-noSSA: In the extreme case of no SSA, the MFP of
ionizing photons is completely determined by the morph-
ology of large-scale neutral islands, i.e., λmfp= λI, the
ionization background is large in this case. Though
unrealistic, we can use this case for comparison.

islandFAST-SC: The number density of LLSs was observed up
to redshift ∼6 (Songaila & Cowie 2010). In the second
model, we adopt the evolution of the MFP limited by
SSAs extrapolated from the fitting formula provided by
Songaila & Cowie (2010), expressed as:
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2. islandFAST–SC: moderate UVB

3. islandFAST–RS: low UVB

Songaila & Cowie (2010) 

hydrogen. Here Nback is the number of background ionizing
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the island at the redshift under consideration. The change in the
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where F(z) is the physical photon number flux of the ionizing
background, zback is the redshift at which a global ionizing
background is set up, and H(z) is the Hubble parameter. The
number density of background ionizing photons can be written
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fraction of host islands. The ionizing photon number flux F(z)
in Equation (4) is then computed with the relation

( ) ( )( )= +gF z n z z c1 43 . Note that in islandFAST, the
MFP is implemented by its original definition of attenuating
ionizing photons, but not a sharp boundary for the filtering
scale, or a sharp cut-off for the traveling distance of ionizing
photons, as in previous simulations (e.g., Alvarez & Abel 2012;
Iliev et al. 2014; Shukla et al. 2016). In this work, ξ is defined
in terms of Nγ/H, and we assume the same production rate of
ionizing photons per He atom in stars as that per H atom in
stars, i.e., Nγ/He= Nγ/H, so Equation (2) implicitly includes the
contribution and consumption of ionizing photons by helium
atoms, and the factor mH/XH in the second term in Equation (2)
cancels out the same factor when computing n̄H in
Equation (5).

For the island stage, the islandFAST takes a two-step
filtering approach; it first finds host islands by identifying first-
down-crossings with respect to the island barrier including the
contribution from an ionizing background, and then identifies
bubbles-in-island by applying a second filtering step within
each host island using the bubble barrier. With an input model
of SSAs, the islandFAST self-consistently computes the
effective MFP limited by both the large-scale neutral islands
and the SSAs, and derives the evolution of the ionizing
background simultaneously with the ionization field in adaptive
redshift steps.

In the original version of islandFAST (Xu et al. 2017), the
ionizing background was assumed to be present only in the
island stage. However, the percolation process begins as early
as when the universe was only∼30% ionized (Furlanetto &
Oh 2016; Chen et al. 2019), and the ionizing background is

expected to have been gradually set up since then, though it
may have fluctuated significantly during the percolation
process. In this work, we assume that a relatively uniform
ionizing background has been present since the “neutral fibers”
stage (i.e., when the neutral regions thinned into filamentary
structures; Chen et al. 2019), and zback is set by the time when
the mean neutral fraction is 30%.
We incorporate three different models for the SSAs, as

detailed below. As shown in previous works, more abundant
SSAs result in a more delayed and prolonged reionization
process (e.g., Alvarez & Abel 2012; Sobacchi &
Mesinger 2014). In addition to the SSA models, two key
parameters determine the process of reionization, i.e., the
minimum mass Mmin, or equivalently the minimum virial
temperature Tmin

vir , of halos that contribute ionizing photons, and
the ionizing efficiency parameter ξ. The former regulates the
time at which the reionization begins in earnest, while the latter
determines the speed of the reionization process. By tuning
these two parameters, we control the reionization processes
with different SSA models to be consistent with various
observations.

2.1. The Models for SSAs

During the island stage, the MFP of ionizing photons is
limited not only by large-scale underdense islands but also by
small-scale overdense absorbers. The effective MFP of ionizing
photons λmfp is given by

( )l l l= +- - - , 6mfp
1

I
1

abs
1

where λI is the MFP limited by large-scale underdense islands,
and λabs is the MFP due to small-scale overdense absorbers. In
the simulation, λI is computed on-the-fly using the MFP
algorithm (Mesinger & Furlanetto 2007), which is taken as the
average length of random vectors starting from an ionized pixel
reaching an edge of a neutral island. Because of the relatively
low column density of Lyα forest systems and the relative
rarity of damped Lyman-alpha systems, the LLSs are the
dominant contributor to the IGM opacity, reducing the MFP of
ionizing photons, and weakening the ionizing background
(Furlanetto & Oh 2005; Shukla et al. 2016). Here the parameter
λabs implicitly includes the contributions from all kinds of
unresolved absorbers, i.e., the SSAs.
We consider the following three models of SSAs corresp-

onding to different levels of the ionizing background.

islandFAST-noSSA: In the extreme case of no SSA, the MFP of
ionizing photons is completely determined by the morph-
ology of large-scale neutral islands, i.e., λmfp= λI, the
ionization background is large in this case. Though
unrealistic, we can use this case for comparison.

islandFAST-SC: The number density of LLSs was observed up
to redshift ∼6 (Songaila & Cowie 2010). In the second
model, we adopt the evolution of the MFP limited by
SSAs extrapolated from the fitting formula provided by
Songaila & Cowie (2010), expressed as:

[ ] ( )l =
+ -⎛⎝ ⎞⎠z

50
1

4.5
physical Mpc . 7abs

4.44

This model corresponds to a relatively high level of the
ionizing background, or equivalently a moderate MFP.
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islandFAST-RS: Recent observations have favored a rapid
evolution of the MFP near the end of reionization (e.g.,
Becker et al. 2021), implying significant modulation of the
MFP by the large-scale ionization field. The island-
FAST-RS model adopts the neutral-fraction-dependent
λmfp given by the high-resolution Aurora radiation-
hydrodynamical simulations for the EoR (Figure 1 in
Rahmati & Schaye 2018). We interpolate to calculate the
MFP for a derived neutral fraction from our simulation,
and iterate to achieve a consistent ionization field and the
MFP for each redshift step. As shown below, this model
corresponds to a low level of the ionizing background and
a short MFP.

Our simulation box has a co-moving size of 1 Gpc a side and
6003 cells. For each of the SSA models, we run two sets of

simulations. One set adopts { }x = =T10, 10 Kmin
vir 4 corresp-

onding to early and low-mass ionizing sources, and the other
adopts{ }x = = ´T30, 5 10 Kmin

vir 4 corresponding to late and
high-mass ionizing sources. As a reference, we also run the
21cmFAST for the same sets of parameters. In the following
analyses, the fiducial source parameters for 21cmFAST,
islandFAST-noSSA, and islandFAST-SC models are
{ }x = =T10, 10 Kmin

vir 4 , while the fiducial parameters for the
islandFAST-RS model are { }x = = ´T30, 5 10 Kmin

vir 4 ,
chosen to be consistent with various observations. The
evolutions of the volume neutral fraction x̄H I from the three
islandFAST models, and that from 21cmFAST, are shown
in Figure 1. Also shown are the observational constraints from
various observations as indicated in the legend and the caption.
The reionization processes predicted by the 21cmFAST,
islandFAST-noSSA, islandFAST-SC, and island-
FAST-RS end at redshifts 6.02, 6.00, 5.74, and 5.30,
respectively. The corresponding Thompson optical depths are
0.0545, 0.0543, 0.0541, and 0.0557, respectively, all consistent
with the latest Planck results (Planck Collaboration et al. 2020).
We note that the reionization history of the late EoR based on
island topology does not connect smoothly with the history of
early EoR simulated assuming bubble-topology. This is an
intrinsic defect of the simulation in describing the complex
percolation process. However, as will be shown below (in
Section 3.1), when compared at the same mean neutral
fractions, the islandFAST-noSSA and 21cmFAST predict
consistent island statistics, so this discontinuity at the
topological transition would not affect the results on the island
statistics. We reserve the improvement on the simulation
strategy for the mid-EoR to future works. Here we confirm the
previous result that the presence of SSAs prolongs the
reionization process.
Figure 2 shows the evolution of the MFP for ionizing

photons (left panel) and the photoionization rate (right panel)
predicted by the three SSA models. In the case of no SSA, the
MFP is entirely limited by neutral islands, and as expected, the
MFP grows rapidly as the islands being ionized (blue solid
line) and the ionizing background also increase rapidly. In the
presence of SSAs, the propagation of ionizing photons is
effectively blocked, resulting in a significant reduction of the

Figure 1. The ionization history predicted by the four semi-numerical
simulations (solid lines) as compared to various observational data. The
observational data include constraints with the optical depth measurement from
Planck (Planck Collaboration et al. 2020), the neutral IGM damping wing on
high-z QSO spectra (Davies et al. 2018), the Lyα equivalent width distribution
of Lyman-break galaxies (Mason et al. 2018, 2019; Jung et al. 2020), the
clustering of Lyα emitters (Sobacchi & Mesinger 2015), the Lyα fraction
(Mesinger et al. 2015), and the dark pixel statistics of high-z QSO spectra
(McGreer et al. 2015), as indicated in the legend.

Figure 2. Left panel: the evolution of the MFP for ionizing photons. The blue, green, and black solid lines refer to the evolutions from islandFAST-noSSA,
islandFAST-SC, and islandFAST-RS models, respectively. The magenta dashed line shows the MFP extrapolated from the fitting formula by Worseck et al.
(2014), while the cyan dashed line indicates the MFP due to SSAs only, extrapolated from the fitting formula by Songaila & Cowie (2010). The dots with error bars
show the recent MFP measurement by Becker et al. (2021). Right panel: the H I photoionization rate from the three simulations, compared with measurements from
Wyithe & Bolton (2011), Calverley et al. (2011), and D’Aloisio et al. (2018).
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Section 3.1), when compared at the same mean neutral
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consistent island statistics, so this discontinuity at the
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line) and the ionizing background also increase rapidly. In the
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The intrinsic δTb slices 

fields from broadband imaging. Figure 13 shows the size
distributions with brightness temperature threshold of 6 σT for
narrowband imaging (top panels) and those with 3 σT for
broadband imaging (bottom panels). It is found that using
narrowband imaging with B= 0.1 MHz, we will be able to
extract the intrinsic island scale using a brightness temperature

threshold of 6 σT. A lower threshold will overestimate the
island scales. Using the broadband imaging with B= 1MHz,
almost all of the noises would be eliminated with a threshold
value of 3 σT. The reconstructed distributions are very similar
to the size distributions shown in the bottom panels in
Figure 12, though the extracted characteristic scales are a bit

Figure 11. The δTb slices (top plots) and their mock images as observed by the SKA1-Low core array (bottom plots). All slices are 1 Gpc on a side in co-moving scale.
The slices in the left column are 1.67 Mpc thick, and the observing bandwidth is 0.1 MHz, and the slices in the right column are 15 Mpc thick, corresponding to an
observing bandwidth of 1 MHz. In each plot, the top, middle, and bottom panels are for the islandFAST-noSSA, islandFAST-SC, and islandFAST-RS
models, respectively, and the three columns correspond to reionization stages with mean neutral fractions of ¯ =x 0.16H I , 0.10, and 0.01, from left to right,
respectively.
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models, respectively, and the three columns correspond to reionization stages with mean neutral fractions of ¯ =x 0.16H I , 0.10, and 0.01, from left to right,
respectively.
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Figure 6-1: An illustration of the SKA1-Low architecture, emphasising the array configuration, 
showing the processing as blocks.  Top Left: Full array configuration.  Each dot is a cluster of 6 

stations.  Top Right: Inner 3.4 km diameter array configuration (external circle). Each dot is a station.  
The ‘dashes’ inside the circles within the Core depict log-periodic dipole antennas, each of which is 

equipped with a Low-Noise Amplifier (LNA).  Bottom: Station Beamformers, the Correlator-
Beamformer (CBF) (array) and Pulsar Processors.  The outputs of the Correlator-Beamformer and the 

Pulsar Processors go through a long optical-fibre system to the Science Data Processors and a VLBI 
terminal in Perth. 

fields from broadband imaging. Figure 13 shows the size
distributions with brightness temperature threshold of 6 σT for
narrowband imaging (top panels) and those with 3 σT for
broadband imaging (bottom panels). It is found that using
narrowband imaging with B= 0.1 MHz, we will be able to
extract the intrinsic island scale using a brightness temperature

threshold of 6 σT. A lower threshold will overestimate the
island scales. Using the broadband imaging with B= 1MHz,
almost all of the noises would be eliminated with a threshold
value of 3 σT. The reconstructed distributions are very similar
to the size distributions shown in the bottom panels in
Figure 12, though the extracted characteristic scales are a bit

Figure 11. The δTb slices (top plots) and their mock images as observed by the SKA1-Low core array (bottom plots). All slices are 1 Gpc on a side in co-moving scale.
The slices in the left column are 1.67 Mpc thick, and the observing bandwidth is 0.1 MHz, and the slices in the right column are 15 Mpc thick, corresponding to an
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models, respectively, and the three columns correspond to reionization stages with mean neutral fractions of ¯ =x 0.16H I , 0.10, and 0.01, from left to right,
respectively.

11

The Astrophysical Journal, 927:5 (15pp), 2022 March 1 Wu et al.

Credit: SKAO (SKA-TEL-SKO-0001075) 

antennae stations, each has an effective diameter of 38 m. We
consider the core array with 224 stations within a radius of
500 m, and the inner array of 278 stations distributed in an area
of radius 1700 m. We will take into account the limited angular
and spectral resolution and the expected thermal noise of the
array, but assume that the foregrounds and radio frequency
interference removal and calibrations are perfect, though these
effects would depend on technologies that are still under
development (e.g., Barry et al. 2016).

To simulate the slices of the observed δTb field, we first
smooth the δTb mock field to match the telescope resolution.
The co-moving size of a resolved pixel perpendicular to the line
of sight is

( ) ( )q= Dl D z , 9xy c

where Dc(z) is the co-moving angular distance to redshift z, and
q lD ~ L1.22 max is the angular resolution of the array, in

which λ and Lmax are the observing wavelength and the
maximum baseline, respectively. The pixel size along the line
of sight is related to the observing bandwidth B by

( )
( )

( )
n

=
+

l
c z B

H z
1

, 10z

2

0

where c is the speed of light. In this study, we try B= 0.1 MHz
and B= 1MHz, corresponding to lz∼ 1.48Mpc and
lz∼ 14.8 Mpc at z= 6, respectively. When observing with the
narrow band of 0.1 MHz, we use a single slice of depth
1.67Mpc directly from the simulation box, and when
observing with the broad band of 1 MHz, we average the
adjacent nine slices to get a two-dimensional slice for each
redshift z. Then each slice is convolved with a Gaussian
window of width s = l 8 ln 2xy .

Next, we add the thermal noise to the smoothed slices. For
the core array and the inner array of SKA1-Low considered in
this work, we simply assume a uniform uv-coverage; then, the
Gaussian thermal noise inside a resolution element corresp-
onding to a scale k⊥ can be written as (Koopmans et al. 2015):

( ) ( )s
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= ´ W
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B t

A A
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, 11T c

2
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1 2 sys
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2

where ΩFoV is the field of view of the array, Tsys is the system
temperature, and tint is the integration time. Aeff= π(19 m)2 is
the effective collecting area of each station, which is related to
the field of view by ΩFoV= λ2/Aeff. Here Acore is the area over
which the antennae are distributed, and the total collecting area
is Acoll.

For the core array of SKA1-Low, ( )p=A 500 mcore
2,

Acoll= 224× Aeff, and qD ~ ¢6.17 at z= 6 (corresponding to
15.2 co-moving Mpc). For the inner array, we have

( )p=A 1700 mcore
2, Acoll= 278× Aeff, and qD ~ ¢1.81 at

z= 6 (corresponding to 4.45 co-moving Mpc). At the
frequency range relevant to the 21 cm signals from the EoR,
the system temperature is dominated by the sky brightness
temperature, and we assume Tsys= 100+ 400× (ν
/150MHz)−2.55 K (Koopmans et al. 2015). In the following,
we adopt deep surveys with tint= 1000 hr. Then the core array
has a noise level of σT∼ 1.4 mK or 0.43 mK for B= 0.1 MHz
or 1MHz, respectively, and the inner array will have
σT∼ 12.7 mK (B= 0.1 MHz) or 4.0 mK (B= 1MHz). It is
found that the increased angular resolution comes at a price, the

inner array has a high level of thermal noise as compared to the
cosmological signal, and it would be difficult to extract the
intrinsic properties of the neutral islands. Therefore, we will use
the core array in the following analysis.
Figure 11 shows the δTb slices from a single slice from the

simulation (top-left plot), those averaged from nine adjacent
slices (top-right plot), and their corresponding mock images as
observed by the SKA1-Low core array using B= 0.1 MHz
(bottom-left plot) or B= 1MHz (bottom-right plot), respec-
tively. In each plot, we show the slices predicted by the
islandFAST-noSSA (top row), islandFAST-SC (middle
row), and islandFAST-RS models (bottom row) at fixed
neutral fractions of ¯ =x 0.16H I , 0.10, and 0.01 from left to
right, with the corresponding redshifts marked on the slices.
The neutral islands are seen in 21 cm emission, while the
ionized regions fluctuate around the zero-brightness in the
mock images due to the thermal noise.
It is seen from the top-left plot that the intrinsic δTb slices

perfectly follow the ionization field (Figure 3) as expected,
while the averaged δTb slices in the top-right plot show clearly
the projection effect. Most small bubbles within the islands
disappear, and the boundaries of the islands expand due to the
line-of-sight smoothing. With the limited angular resolution of
the SKA1-Low core array (15.2 co-moving Mpc in the
transverse direction at z= 6), δTb near the boundaries of the
islands is lowered, while δTb near the edges of ionized regions
becomes slightly positive, making the boundaries slurred and
enlarging the size of the observed islands, as shown in the
bottom plots of Figure 11.
In order to calculate the size distribution of neutral islands

that is possibly extractable from two-dimensional δTb slices,
even without any instrumental effects, we apply the MFP
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and the averaged slices of depth 15Mpc, and the results are
shown in the top and bottom panels of Figure 12, respectively.
In each row, the three panels from left to right are for the
islandFAST-noSSA, islandFAST-SC, and island-
FAST-RS models, respectively. We see that the characteristic
island scales extracted from single δTb slices (top panels) can
well reflect the typical sizes from the three-dimensional
ionization fields as shown in Figure 5, which we refer to as
“intrinsic scale” below. However, the characteristic scales
measured from the averaged δTb slices (bottom panels) are
much larger than the intrinsic scale. Moreover, when projected
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evolutionary trend from ¯ =x 0.10H I to ¯ =x 0.01H I , more
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different models from ¯ =x 0.16H I to ¯ =x 0.10H I is retained;
only the islandFAST-RS model shows an obvious evolution
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We then apply the MFP algorithm to the mock images as

observed by the SKA1-Low core array, with a brightness
temperature threshold of Tc. We have experimented with
different Tc as compared to the noise level of σT, and found that
a relatively high threshold of brightness temperature is required
in order to reconstruct the intrinsic island scales from narrow-
band imaging, while a relatively low brightness threshold can
be used to extract the size distributions of the averaged δTb
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larger. It is clear that only the islandFAST-RS model shows
obvious evolution in the extracted island scale throughout the
late EoR.

From the above analysis, we see that the line-of-sight and
transverse smoothing, and noise jointly affect the observed size
distribution and evolution of islands in 21 cm imaging. One
needs a balance between the resolution to resolve islands, in

Figure 12. Size distributions of neutral islands extracted from two-dimensional δTb slices from simulations. The top panels are the results for single slices of depth
1.67 Mpc, and the bottom panels are for averaged slices of depth 15 Mpc. In each row, the left, middle, and right panels are from simulations of islandFAST-
noSSA, islandFAST-SC, and islandFAST-RS, respectively. In each panel, the blue solid, green dashed, and black dotted–dashed curves are for ¯ =x 0.16H I ,
0.10, and 0.01, respectively.

Figure 13. Size distributions of neutral islands extracted from mock δTb images as observed by the core array of SKA1-Low, in correspondence to the original δTb
slices in Figure 12. The top panels assume narrowband observations with B = 0.1 MHz, and a brightness temperature threshold of 6σT is used. The bottom panels
adopt relatively broadband observations with B = 1 MHz, and a threshold of 3σT is used.
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• THE ABUNDANCE OF THE SSAS AND THE LEVEL OF THE IONIZING BACKGROUND CAN BE DISTINGUISHED OR CONSTRAINED. 

The 21 cm power spectrum with expected SKA1-Low core array errors 

both frequency and angular dimensions, and the thermal noise
not to overwhelm the signal. While the smoothing effect can be
degenerate with the impact of sparse SSAs, in enlarging the
measured island size, we can still distinguish the different
reionization models by looking for the evolutionary trend from
¯ =x 0.16H I to ¯ =x 0.10;H I only the islandFAST-RS model
shows an obvious evolution in the measured island scale.
However, the simple MFP method with a single threshold may
not extract all useful information about the distributions, and
the result may be affected by the choice of threshold. It may
require applying multiple thresholds to extract this information.
There may also be other more sophisticated and robust ways to
extract the bubble or island characteristic scales from
observation, e.g., the “granulometry” technique (Kakiichi
et al. 2017). Such methods should be extensively developed
and tested with simulation to ensure correct interpretation of
the results.

The different models can also be distinguished with power
spectrum measurements. In Section 3.3 we noted that the
presence of SSAs mainly affects the large-scale power in the 21
cm brightness temperature fluctuations, which is our primary
interest. For precise measurement of the large-scale power, the
core array of SKA1-Low is suitable. Under the assumption of
uniform uv-coverage, the measurement error on the 21 cm
power spectrum due to thermal noise is (Koopmans et al.
2015):
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where lz is the depth of the survey for a bandwidth B given by
Equation (10), and Nb is the number of independent beams.
Here we assume Nb= 1, B= 1MHz, and tint= 1000 hr. The
total error is obtained by adding the statistical error to this
thermal noise.

We compute the 21 cm power spectra of the three SSA
models for the late EoR from the δTb-field, smoothed to match
the resolution of the core array of SKA1-Low. Figure 14 shows
the measured 21 cm power spectra for three models, with the
total measurement errors indicated by the shaded regions. We
find that the differences between the three SSA models at the
island stage ( ¯ 1x 0.10H I ) are significant with respect to the
expected measurement errors for the core array, so at least in

principle, the upcoming SKA1-Low survey should also be able
to discriminate the EoR models with power spectrum
measurements. In our present case, the abundance of the
small-scale absorbers and the level of the ionizing background
can be distinguished or constrained.
However, we note that the 21 cm power spectrum may be

biased or distorted by residual foregrounds, though these are
not included in the present work. Also, these spectra are quite
featureless, so they may also suffer from parameter degen-
eracies, e.g., the degeneracy between the SSA abundance and
the source properties as discussed in Section 3.3. The imaging
observations, which can provide morphological properties of
neutral islands and ionized regions, are complementary in this
aspect.

5. Conclusion

In this work, we use a set of semi-numerical simulations to
study the effects of the small-scale overdense absorbers on the
large-scale morphology of the underdense neutral islands
during the late EoR. We consider three SSA models, i.e., the
islandFAST-noSSA model with no SSA and an extremely
high ionizing background, the islandFAST-SC model with
a moderate number density of SSAs and a relatively high
ionizing background, and the islandFAST-RS model with
the most abundant SSAs and a correspondingly low level of
ionizing background. In agreement with previous works (e.g.,
Alvarez & Abel 2012; Shukla et al. 2016), we find that the
presence of SSAs prolongs the reionization process, and affects
the morphology of the ionization field, which results in the
suppression of the large-scale power in the 21 cm power
spectrum.
The morphology of the islands reflects the competitive roles

played by the ionizing photons generated inside the islands and
those coming from outside. In the islandFAST-noSSA and
islandFAST-SC models, the ionization is dominated by the
photons from outside, i.e., the ionizing background. Small
islands could hardly survive; hence, when the universe enters
the neutral fibers stage, the evolution of the typical island scale
is very slow and stalls at ∼10 co-moving Mpc. In the case of
the islandFAST-RS model, where the SSA abundance is
high and the ionizing background is weak, sources from inside
dominate the reionization, and the neutral islands will more
easily break into small ones. The size distribution then evolves,
and the typical size of the islands is smaller.

Figure 14. The 21 cm power spectrum at ¯ =x 0.16H I , 0.10, and 0.01, from left to right, respectively. The blue solid, green dashed, and black dotted–dashed lines are
for the islandFAST-noSSA, islandFAST-SC, and islandFAST-RS simulations, respectively, with the shaded regions showing the measurement errors
expected for the core array of SKA1-Low.
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both frequency and angular dimensions, and the thermal noise
not to overwhelm the signal. While the smoothing effect can be
degenerate with the impact of sparse SSAs, in enlarging the
measured island size, we can still distinguish the different
reionization models by looking for the evolutionary trend from
¯ =x 0.16H I to ¯ =x 0.10;H I only the islandFAST-RS model
shows an obvious evolution in the measured island scale.
However, the simple MFP method with a single threshold may
not extract all useful information about the distributions, and
the result may be affected by the choice of threshold. It may
require applying multiple thresholds to extract this information.
There may also be other more sophisticated and robust ways to
extract the bubble or island characteristic scales from
observation, e.g., the “granulometry” technique (Kakiichi
et al. 2017). Such methods should be extensively developed
and tested with simulation to ensure correct interpretation of
the results.

The different models can also be distinguished with power
spectrum measurements. In Section 3.3 we noted that the
presence of SSAs mainly affects the large-scale power in the 21
cm brightness temperature fluctuations, which is our primary
interest. For precise measurement of the large-scale power, the
core array of SKA1-Low is suitable. Under the assumption of
uniform uv-coverage, the measurement error on the 21 cm
power spectrum due to thermal noise is (Koopmans et al.
2015):
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where lz is the depth of the survey for a bandwidth B given by
Equation (10), and Nb is the number of independent beams.
Here we assume Nb= 1, B= 1MHz, and tint= 1000 hr. The
total error is obtained by adding the statistical error to this
thermal noise.

We compute the 21 cm power spectra of the three SSA
models for the late EoR from the δTb-field, smoothed to match
the resolution of the core array of SKA1-Low. Figure 14 shows
the measured 21 cm power spectra for three models, with the
total measurement errors indicated by the shaded regions. We
find that the differences between the three SSA models at the
island stage ( ¯ 1x 0.10H I ) are significant with respect to the
expected measurement errors for the core array, so at least in

principle, the upcoming SKA1-Low survey should also be able
to discriminate the EoR models with power spectrum
measurements. In our present case, the abundance of the
small-scale absorbers and the level of the ionizing background
can be distinguished or constrained.
However, we note that the 21 cm power spectrum may be

biased or distorted by residual foregrounds, though these are
not included in the present work. Also, these spectra are quite
featureless, so they may also suffer from parameter degen-
eracies, e.g., the degeneracy between the SSA abundance and
the source properties as discussed in Section 3.3. The imaging
observations, which can provide morphological properties of
neutral islands and ionized regions, are complementary in this
aspect.

5. Conclusion

In this work, we use a set of semi-numerical simulations to
study the effects of the small-scale overdense absorbers on the
large-scale morphology of the underdense neutral islands
during the late EoR. We consider three SSA models, i.e., the
islandFAST-noSSA model with no SSA and an extremely
high ionizing background, the islandFAST-SC model with
a moderate number density of SSAs and a relatively high
ionizing background, and the islandFAST-RS model with
the most abundant SSAs and a correspondingly low level of
ionizing background. In agreement with previous works (e.g.,
Alvarez & Abel 2012; Shukla et al. 2016), we find that the
presence of SSAs prolongs the reionization process, and affects
the morphology of the ionization field, which results in the
suppression of the large-scale power in the 21 cm power
spectrum.
The morphology of the islands reflects the competitive roles

played by the ionizing photons generated inside the islands and
those coming from outside. In the islandFAST-noSSA and
islandFAST-SC models, the ionization is dominated by the
photons from outside, i.e., the ionizing background. Small
islands could hardly survive; hence, when the universe enters
the neutral fibers stage, the evolution of the typical island scale
is very slow and stalls at ∼10 co-moving Mpc. In the case of
the islandFAST-RS model, where the SSA abundance is
high and the ionizing background is weak, sources from inside
dominate the reionization, and the neutral islands will more
easily break into small ones. The size distribution then evolves,
and the typical size of the islands is smaller.

Figure 14. The 21 cm power spectrum at ¯ =x 0.16H I , 0.10, and 0.01, from left to right, respectively. The blue solid, green dashed, and black dotted–dashed lines are
for the islandFAST-noSSA, islandFAST-SC, and islandFAST-RS simulations, respectively, with the shaded regions showing the measurement errors
expected for the core array of SKA1-Low.
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both frequency and angular dimensions, and the thermal noise
not to overwhelm the signal. While the smoothing effect can be
degenerate with the impact of sparse SSAs, in enlarging the
measured island size, we can still distinguish the different
reionization models by looking for the evolutionary trend from
¯ =x 0.16H I to ¯ =x 0.10;H I only the islandFAST-RS model
shows an obvious evolution in the measured island scale.
However, the simple MFP method with a single threshold may
not extract all useful information about the distributions, and
the result may be affected by the choice of threshold. It may
require applying multiple thresholds to extract this information.
There may also be other more sophisticated and robust ways to
extract the bubble or island characteristic scales from
observation, e.g., the “granulometry” technique (Kakiichi
et al. 2017). Such methods should be extensively developed
and tested with simulation to ensure correct interpretation of
the results.

The different models can also be distinguished with power
spectrum measurements. In Section 3.3 we noted that the
presence of SSAs mainly affects the large-scale power in the 21
cm brightness temperature fluctuations, which is our primary
interest. For precise measurement of the large-scale power, the
core array of SKA1-Low is suitable. Under the assumption of
uniform uv-coverage, the measurement error on the 21 cm
power spectrum due to thermal noise is (Koopmans et al.
2015):
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where lz is the depth of the survey for a bandwidth B given by
Equation (10), and Nb is the number of independent beams.
Here we assume Nb= 1, B= 1MHz, and tint= 1000 hr. The
total error is obtained by adding the statistical error to this
thermal noise.

We compute the 21 cm power spectra of the three SSA
models for the late EoR from the δTb-field, smoothed to match
the resolution of the core array of SKA1-Low. Figure 14 shows
the measured 21 cm power spectra for three models, with the
total measurement errors indicated by the shaded regions. We
find that the differences between the three SSA models at the
island stage ( ¯ 1x 0.10H I ) are significant with respect to the
expected measurement errors for the core array, so at least in

principle, the upcoming SKA1-Low survey should also be able
to discriminate the EoR models with power spectrum
measurements. In our present case, the abundance of the
small-scale absorbers and the level of the ionizing background
can be distinguished or constrained.
However, we note that the 21 cm power spectrum may be

biased or distorted by residual foregrounds, though these are
not included in the present work. Also, these spectra are quite
featureless, so they may also suffer from parameter degen-
eracies, e.g., the degeneracy between the SSA abundance and
the source properties as discussed in Section 3.3. The imaging
observations, which can provide morphological properties of
neutral islands and ionized regions, are complementary in this
aspect.
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In this work, we use a set of semi-numerical simulations to
study the effects of the small-scale overdense absorbers on the
large-scale morphology of the underdense neutral islands
during the late EoR. We consider three SSA models, i.e., the
islandFAST-noSSA model with no SSA and an extremely
high ionizing background, the islandFAST-SC model with
a moderate number density of SSAs and a relatively high
ionizing background, and the islandFAST-RS model with
the most abundant SSAs and a correspondingly low level of
ionizing background. In agreement with previous works (e.g.,
Alvarez & Abel 2012; Shukla et al. 2016), we find that the
presence of SSAs prolongs the reionization process, and affects
the morphology of the ionization field, which results in the
suppression of the large-scale power in the 21 cm power
spectrum.
The morphology of the islands reflects the competitive roles

played by the ionizing photons generated inside the islands and
those coming from outside. In the islandFAST-noSSA and
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photons from outside, i.e., the ionizing background. Small
islands could hardly survive; hence, when the universe enters
the neutral fibers stage, the evolution of the typical island scale
is very slow and stalls at ∼10 co-moving Mpc. In the case of
the islandFAST-RS model, where the SSA abundance is
high and the ionizing background is weak, sources from inside
dominate the reionization, and the neutral islands will more
easily break into small ones. The size distribution then evolves,
and the typical size of the islands is smaller.
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Take-away messages for large-scale modeling for 
reionization
• Large-scale structure evolution of reionization can be modeled with the Excursion 

Set Theory of Reionization 

Bubble Model & 21cmFAST 
for the early EoR

(Furlanetto et al. 2004)
ü Growing isolated ionized 

bubbles

Island Model & islandFAST
for the late EoR

(Xu et al. 2014, 2017)
ü Shrinking isolated neutral islands
ü UVB & small absorbers

• Predictions for 21-cm tomography observations

• Incorporating instrumental effects

• put constraints on the source properties, SSA abundance, the MFP, and the level of the 

ionizing background.



Modeling the small-scale structures of the IGM during EoR

è 21-cm forest



Receiver

21 cm Forest 
-- absorption lines against high-z radio point sources 
(e.g. Carilli et al. 2002; Furlanetto & Loeb 2002; YX et al. 2009, 2010, 2011)

YX et al. 2011



The 21 cm optical depth

¡ The 21 cm optical depth of non-linear objects

¡ The 21 cm optical depth of a uniform medium with proper velocity v|| (Hubble flow 
+ peculiar velocity)

S.R. Furlanetto et al. / Physics Reports 433 (2006) 181 –301 193

here. Thus for uniform brightness clouds with small apparent angular diameter, a convenient conversion is S! ≈
I!!" = 2kBTb!2!" c2, where all quantities are measured in the observer’s frame. Note that, once the cosmological
redshift and the variation of d! with distance are included, the flux scales like S ∝ D−2

L , while the flux density scales
as S! ∝ (1 + z)D−2

L .
In the Rayleigh–Jeans limit, the equation of radiative transfer along a line of sight through a cloud of uniform

excitation temperature Tex states that the emergent brightness at frequency ! is

T ′
b(!) = Tex(1 − e−#!) + T ′

R(!)e−#! , (10)

where the optical depth #! ≡
∫

ds$! is the integral of the absorption coefficient ($!) along the ray through the cloud,
T ′

R is the brightness of the background radiation field incident on the cloud along the ray, and s is the proper distance.
For the 21 cm transition, the excitation temperature Tex is referred to as the spin temperature TS . It quantifies the

relative number densities, ni , of atoms in the two hyperfine levels of the electronic ground state (we will use the
subscripts 1 and 0 to denote the triplet and singlet states, respectively; these equal the total angular momentum F of
the atom). It is defined via

n1

n0
= g1

g0
e−E10/kBTS = 3 e−T!/TS , (11)

where gi is the statistical weight (here g0 = 1 and g1 = 3), E10 = 5.9 × 10−6 eV is the energy splitting, and T! ≡
E10/kB = 0.068 K is the equivalent temperature. Because all astrophysical applications have TS?T∗, approximately
three of four atoms find themselves in the excited state. As a result, the absorption coefficient must include a correction
for stimulated emission (and hence it depends on TS as well). Note that, in detail, the assumption of a single TS applying
to the entire hydrogen distribution is not necessarily correct. Rigorously, one should solve a Boltzmann equation that
couples the spin and velocity distributions [111]. When the collision time is long, this introduces percent level changes
to the brightness temperature.

The optical depth of a cloud of hydrogen is then

#! =
∫

ds%01(1 − e−E10/kBTS )&(!)n0 (12)

≈ %01

(
h!

kBTS

)(
NHI

4

)
&(!), (13)

where

%01 ≡ 3c2A10

8'!2 , (14)

A10 = 2.85 × 10−15 s−1 is the spontaneous emission coefficient of the 21 cm transition, NHI is the column density of
HI (here the factor 1

4 accounts for the fraction of HI atoms in the hyperfine singlet state), and &(!) is the line profile
(defined so that

∫
d!&(!) = 1). The second factor in Eq. (12) accounts for stimulated emission. The approximate form

in Eq. (13) assumes uniformity throughout the cloud.
In general, the line shape &(!) includes natural, thermal, and pressure broadening, as well as bulk motion (which in-

creases the effective Doppler spread). Our most important application is to IGM gas expanding uniformly with the Hub-
ble flow. Then the velocity broadening of a region of linear dimension s will be !V ∼ sH(z) so that &(!) ∼ c/[sH(z)!].
The column density along such a segment depends on the neutral fraction xHI of hydrogen, so NHI = xHInH (z) s. A
more exact calculation yields, with (12), an expression for the 21 cm optical depth of the diffuse IGM,

#!0 = 3
32'

hc3A10

kBTS!2
0

xHInH

(1 + z)(dv‖/dr‖)
(15)

≈ 0.0092(1 + ()(1 + z)3/2 xHI

TS

[
H(z)/(1 + z)

dv‖/dr‖

]
, (16)

where in the second equality TS is in degrees Kelvin. Here the factor (1 + () is the fractional overdensity of baryons
and dv‖/dr‖ is the gradient of the proper velocity along the line of sight, including both the Hubble expansion and the
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Figure 2. The evolution of the global temperature (left-hand panel), the mean ionized fraction (central panel) and the filtering mass and Jeans mass (right
panel) of the IGM. The dashed curves are for f X = 0, and the solid curves from bottom to top in each panel are for f X = 0.05, f X = 0.1, f X = 0.2, f X = 1.0
and f X = 5.0, respectively. In the right-hand panel, the thin and thick curves illustrate the evolutions of the Jeans mass and the filtering mass, respectively.

σ = 5.67 × 10−5 erg cm−2 s−1 K−4 is the Stefan–Boltzmann con-
stant, and me is the electron mass. The evolutions of the IGM tem-
perature and the mean ionized fraction caused by X-rays are shown
in the left and central panels of Fig. 2 for several values of f X. The
case of f X = 0 is denoted by the dashed curves. It corresponds to
the situation in which there is no X-ray background, and the IGM
temperature decreases adiabatically with a mean ionized fraction of
3 × 10−4 which is the residual electron fraction left over after the
recombination. The solid curves from bottom to top in each panel
take f X = 0.05, f X = 0.1, f X = 0.2, f X = 1 and f X = 5, respec-
tively. Here, we also illustrate the corresponding evolutions of the
Jeans mass (thin curves) and the filtering mass (thick curves) in
the right-hand panel of Fig. 2. The filtering mass, which provides a
reasonable fit to the characteristic mass, is MF ∼ 106 M$ for f X !
0.2, MF ∼ 2 × 106 M$ for f X ∼ 1 and MF ∼ 5 × 106 M$ for f X ∼
5 at z ∼ 10.

The IGM creates a global decrement in the afterglow spectrum,
on top of which minihaloes and dwarf galaxies produce deep and
narrow absorption lines. The main broadening mechanism of each
absorption line is the thermal broadening with the Doppler profile.
The 21 cm optical depth of an isolated object is the integral of the
absorption coefficient along the line of sight (Field 1959; Madau
et al. 1997; Furlanetto & Loeb 2002):

τ (ν) = 3hPc
3A10

32π3/2kB

1
ν2

×
∫ +∞

−∞

nH I(r)
b(r)TS(r)

exp
[
− (u(ν) − v̄(r))2

b2(r)

]
dx, (14)

where b(r) is the Doppler parameter of the gas, b(r) =√
2 kBTK (r)/mH, u(ν) ≡ c (ν − ν10)/ν10 and v̄(r) is bulk veloc-

ity of gas projected to the line of sight at the radius r. Inside of the
virial radius, the gas is thermalized, and v̄(r) = 0, while the gas
outside the virial radius has a bulk velocity contributed from both
the infall and the Hubble flow according to the ‘Infall Model’. The
coordinate x is related to the radius r by r2 = (αrvir)2 + x2, where
α is the impact parameter of the penetrating line of sight in units of
rvir.

The spin temperature of neutral hydrogen is defined by the rela-
tive occupation numbers of the two hyperfine structure levels, and
it is determined by three competing processes: (1) absorption of
CMB photons; (2) collisions with other hydrogen atoms, free elec-
trons and other species; and (3) scattering with UV photons. The
equilibrium spin temperature is given by (Field 1958; Furlanetto

et al. 2006)

T −1
S =

T −1
γ + xcT

−1
K + xαT

−1
C

1 + xc + xα

, (15)

where Tγ = 2.726(1 + z) K is the CMB temperature at redshift z, TK

is the gas kinetic temperature and TC is the effective colour tempera-
ture of the UV radiation. In most cases, TC = TK due to the frequent
Lyα scattering (Furlanetto et al. 2006). The collisional coupling is
described by the coefficient xc, and xα is the coupling coefficient of
the Lyα pumping effect known as the Wouthuysen–Field coupling
(Wouthuysen 1952; Field 1958). The main contributions to xc are
H–H collisions and H-−e− collisions, and it can be written as

xc = xeH
c + xHH

c = neκ
eH
10

A10

T'

Tγ

+ nH Iκ
HH
10

A10

T'

Tγ

, (16)

where T' = 0.0682 K is the equivalent temperature of the energy
slitting of the 21 cm transition, and κeH

10 and κHH
10 are the de-excitation

rate coefficients in collisions with free electrons and hydrogen
atoms, respectively. These two coefficients at different temperatures
are tabulated in Furlanetto et al. (2006). The coupling coefficient xα

is proportional to the total scattering rate between Lyα photons and
hydrogen atoms,

xα = 4Pα

27A10

T'

Tγ

, (17)

where the scattering rate Pα is given by

Pα = cσα

ntot
α

(νD

= 4πσαJα. (18)

Here σα ≡ πe2

mec
fα where f α = 0.4162 is the oscillator strength of

the Lyα transition, ntot
α is the total number density of Lyα photons,

Jα is the number intensity of the Lyα photons, and (νD = (b/c) να

is the Doppler width with b being the Doppler parameter and να

being the Lyα frequency.
In addition to the global x̄i(z) and T IGM(z), to compute the line

profiles of the 21 cm absorptions by minihaloes and dwarf galaxies,
we need a detailed prescription of the ionization state, the tempera-
ture profile and the Lyα photon density in and around these objects.
We model, respectively, these properties of both minihaloes and
dwarf galaxies, as well as the intensity of Lyα background in the
following.
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Figure 2. The evolution of the global temperature (left-hand panel), the mean ionized fraction (central panel) and the filtering mass and Jeans mass (right
panel) of the IGM. The dashed curves are for f X = 0, and the solid curves from bottom to top in each panel are for f X = 0.05, f X = 0.1, f X = 0.2, f X = 1.0
and f X = 5.0, respectively. In the right-hand panel, the thin and thick curves illustrate the evolutions of the Jeans mass and the filtering mass, respectively.

σ = 5.67 × 10−5 erg cm−2 s−1 K−4 is the Stefan–Boltzmann con-
stant, and me is the electron mass. The evolutions of the IGM tem-
perature and the mean ionized fraction caused by X-rays are shown
in the left and central panels of Fig. 2 for several values of f X. The
case of f X = 0 is denoted by the dashed curves. It corresponds to
the situation in which there is no X-ray background, and the IGM
temperature decreases adiabatically with a mean ionized fraction of
3 × 10−4 which is the residual electron fraction left over after the
recombination. The solid curves from bottom to top in each panel
take f X = 0.05, f X = 0.1, f X = 0.2, f X = 1 and f X = 5, respec-
tively. Here, we also illustrate the corresponding evolutions of the
Jeans mass (thin curves) and the filtering mass (thick curves) in
the right-hand panel of Fig. 2. The filtering mass, which provides a
reasonable fit to the characteristic mass, is MF ∼ 106 M$ for f X !
0.2, MF ∼ 2 × 106 M$ for f X ∼ 1 and MF ∼ 5 × 106 M$ for f X ∼
5 at z ∼ 10.

The IGM creates a global decrement in the afterglow spectrum,
on top of which minihaloes and dwarf galaxies produce deep and
narrow absorption lines. The main broadening mechanism of each
absorption line is the thermal broadening with the Doppler profile.
The 21 cm optical depth of an isolated object is the integral of the
absorption coefficient along the line of sight (Field 1959; Madau
et al. 1997; Furlanetto & Loeb 2002):

τ (ν) = 3hPc
3A10

32π3/2kB

1
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×
∫ +∞
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nH I(r)
b(r)TS(r)

exp
[
− (u(ν) − v̄(r))2

b2(r)

]
dx, (14)

where b(r) is the Doppler parameter of the gas, b(r) =√
2 kBTK (r)/mH, u(ν) ≡ c (ν − ν10)/ν10 and v̄(r) is bulk veloc-

ity of gas projected to the line of sight at the radius r. Inside of the
virial radius, the gas is thermalized, and v̄(r) = 0, while the gas
outside the virial radius has a bulk velocity contributed from both
the infall and the Hubble flow according to the ‘Infall Model’. The
coordinate x is related to the radius r by r2 = (αrvir)2 + x2, where
α is the impact parameter of the penetrating line of sight in units of
rvir.

The spin temperature of neutral hydrogen is defined by the rela-
tive occupation numbers of the two hyperfine structure levels, and
it is determined by three competing processes: (1) absorption of
CMB photons; (2) collisions with other hydrogen atoms, free elec-
trons and other species; and (3) scattering with UV photons. The
equilibrium spin temperature is given by (Field 1958; Furlanetto

et al. 2006)

T −1
S =

T −1
γ + xcT

−1
K + xαT

−1
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1 + xc + xα

, (15)

where Tγ = 2.726(1 + z) K is the CMB temperature at redshift z, TK

is the gas kinetic temperature and TC is the effective colour tempera-
ture of the UV radiation. In most cases, TC = TK due to the frequent
Lyα scattering (Furlanetto et al. 2006). The collisional coupling is
described by the coefficient xc, and xα is the coupling coefficient of
the Lyα pumping effect known as the Wouthuysen–Field coupling
(Wouthuysen 1952; Field 1958). The main contributions to xc are
H–H collisions and H-−e− collisions, and it can be written as

xc = xeH
c + xHH

c = neκ
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+ nH Iκ
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, (16)

where T' = 0.0682 K is the equivalent temperature of the energy
slitting of the 21 cm transition, and κeH

10 and κHH
10 are the de-excitation

rate coefficients in collisions with free electrons and hydrogen
atoms, respectively. These two coefficients at different temperatures
are tabulated in Furlanetto et al. (2006). The coupling coefficient xα

is proportional to the total scattering rate between Lyα photons and
hydrogen atoms,

xα = 4Pα

27A10

T'

Tγ

, (17)

where the scattering rate Pα is given by

Pα = cσα

ntot
α

(νD

= 4πσαJα. (18)

Here σα ≡ πe2

mec
fα where f α = 0.4162 is the oscillator strength of

the Lyα transition, ntot
α is the total number density of Lyα photons,

Jα is the number intensity of the Lyα photons, and (νD = (b/c) να

is the Doppler width with b being the Doppler parameter and να

being the Lyα frequency.
In addition to the global x̄i(z) and T IGM(z), to compute the line

profiles of the 21 cm absorptions by minihaloes and dwarf galaxies,
we need a detailed prescription of the ionization state, the tempera-
ture profile and the Lyα photon density in and around these objects.
We model, respectively, these properties of both minihaloes and
dwarf galaxies, as well as the intensity of Lyα background in the
following.
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Figure 2. The evolution of the global temperature (left-hand panel), the mean ionized fraction (central panel) and the filtering mass and Jeans mass (right
panel) of the IGM. The dashed curves are for f X = 0, and the solid curves from bottom to top in each panel are for f X = 0.05, f X = 0.1, f X = 0.2, f X = 1.0
and f X = 5.0, respectively. In the right-hand panel, the thin and thick curves illustrate the evolutions of the Jeans mass and the filtering mass, respectively.

σ = 5.67 × 10−5 erg cm−2 s−1 K−4 is the Stefan–Boltzmann con-
stant, and me is the electron mass. The evolutions of the IGM tem-
perature and the mean ionized fraction caused by X-rays are shown
in the left and central panels of Fig. 2 for several values of f X. The
case of f X = 0 is denoted by the dashed curves. It corresponds to
the situation in which there is no X-ray background, and the IGM
temperature decreases adiabatically with a mean ionized fraction of
3 × 10−4 which is the residual electron fraction left over after the
recombination. The solid curves from bottom to top in each panel
take f X = 0.05, f X = 0.1, f X = 0.2, f X = 1 and f X = 5, respec-
tively. Here, we also illustrate the corresponding evolutions of the
Jeans mass (thin curves) and the filtering mass (thick curves) in
the right-hand panel of Fig. 2. The filtering mass, which provides a
reasonable fit to the characteristic mass, is MF ∼ 106 M$ for f X !
0.2, MF ∼ 2 × 106 M$ for f X ∼ 1 and MF ∼ 5 × 106 M$ for f X ∼
5 at z ∼ 10.

The IGM creates a global decrement in the afterglow spectrum,
on top of which minihaloes and dwarf galaxies produce deep and
narrow absorption lines. The main broadening mechanism of each
absorption line is the thermal broadening with the Doppler profile.
The 21 cm optical depth of an isolated object is the integral of the
absorption coefficient along the line of sight (Field 1959; Madau
et al. 1997; Furlanetto & Loeb 2002):

τ (ν) = 3hPc
3A10

32π3/2kB

1
ν2

×
∫ +∞

−∞

nH I(r)
b(r)TS(r)

exp
[
− (u(ν) − v̄(r))2

b2(r)

]
dx, (14)

where b(r) is the Doppler parameter of the gas, b(r) =√
2 kBTK (r)/mH, u(ν) ≡ c (ν − ν10)/ν10 and v̄(r) is bulk veloc-

ity of gas projected to the line of sight at the radius r. Inside of the
virial radius, the gas is thermalized, and v̄(r) = 0, while the gas
outside the virial radius has a bulk velocity contributed from both
the infall and the Hubble flow according to the ‘Infall Model’. The
coordinate x is related to the radius r by r2 = (αrvir)2 + x2, where
α is the impact parameter of the penetrating line of sight in units of
rvir.

The spin temperature of neutral hydrogen is defined by the rela-
tive occupation numbers of the two hyperfine structure levels, and
it is determined by three competing processes: (1) absorption of
CMB photons; (2) collisions with other hydrogen atoms, free elec-
trons and other species; and (3) scattering with UV photons. The
equilibrium spin temperature is given by (Field 1958; Furlanetto

et al. 2006)

T −1
S =

T −1
γ + xcT

−1
K + xαT

−1
C

1 + xc + xα

, (15)

where Tγ = 2.726(1 + z) K is the CMB temperature at redshift z, TK

is the gas kinetic temperature and TC is the effective colour tempera-
ture of the UV radiation. In most cases, TC = TK due to the frequent
Lyα scattering (Furlanetto et al. 2006). The collisional coupling is
described by the coefficient xc, and xα is the coupling coefficient of
the Lyα pumping effect known as the Wouthuysen–Field coupling
(Wouthuysen 1952; Field 1958). The main contributions to xc are
H–H collisions and H-−e− collisions, and it can be written as

xc = xeH
c + xHH

c = neκ
eH
10

A10

T'

Tγ

+ nH Iκ
HH
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T'

Tγ

, (16)

where T' = 0.0682 K is the equivalent temperature of the energy
slitting of the 21 cm transition, and κeH

10 and κHH
10 are the de-excitation

rate coefficients in collisions with free electrons and hydrogen
atoms, respectively. These two coefficients at different temperatures
are tabulated in Furlanetto et al. (2006). The coupling coefficient xα

is proportional to the total scattering rate between Lyα photons and
hydrogen atoms,

xα = 4Pα

27A10

T'

Tγ

, (17)

where the scattering rate Pα is given by

Pα = cσα

ntot
α

(νD

= 4πσαJα. (18)

Here σα ≡ πe2

mec
fα where f α = 0.4162 is the oscillator strength of

the Lyα transition, ntot
α is the total number density of Lyα photons,

Jα is the number intensity of the Lyα photons, and (νD = (b/c) να

is the Doppler width with b being the Doppler parameter and να

being the Lyα frequency.
In addition to the global x̄i(z) and T IGM(z), to compute the line

profiles of the 21 cm absorptions by minihaloes and dwarf galaxies,
we need a detailed prescription of the ionization state, the tempera-
ture profile and the Lyα photon density in and around these objects.
We model, respectively, these properties of both minihaloes and
dwarf galaxies, as well as the intensity of Lyα background in the
following.
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Figure 2. The evolution of the global temperature (left-hand panel), the mean ionized fraction (central panel) and the filtering mass and Jeans mass (right
panel) of the IGM. The dashed curves are for f X = 0, and the solid curves from bottom to top in each panel are for f X = 0.05, f X = 0.1, f X = 0.2, f X = 1.0
and f X = 5.0, respectively. In the right-hand panel, the thin and thick curves illustrate the evolutions of the Jeans mass and the filtering mass, respectively.

σ = 5.67 × 10−5 erg cm−2 s−1 K−4 is the Stefan–Boltzmann con-
stant, and me is the electron mass. The evolutions of the IGM tem-
perature and the mean ionized fraction caused by X-rays are shown
in the left and central panels of Fig. 2 for several values of f X. The
case of f X = 0 is denoted by the dashed curves. It corresponds to
the situation in which there is no X-ray background, and the IGM
temperature decreases adiabatically with a mean ionized fraction of
3 × 10−4 which is the residual electron fraction left over after the
recombination. The solid curves from bottom to top in each panel
take f X = 0.05, f X = 0.1, f X = 0.2, f X = 1 and f X = 5, respec-
tively. Here, we also illustrate the corresponding evolutions of the
Jeans mass (thin curves) and the filtering mass (thick curves) in
the right-hand panel of Fig. 2. The filtering mass, which provides a
reasonable fit to the characteristic mass, is MF ∼ 106 M$ for f X !
0.2, MF ∼ 2 × 106 M$ for f X ∼ 1 and MF ∼ 5 × 106 M$ for f X ∼
5 at z ∼ 10.

The IGM creates a global decrement in the afterglow spectrum,
on top of which minihaloes and dwarf galaxies produce deep and
narrow absorption lines. The main broadening mechanism of each
absorption line is the thermal broadening with the Doppler profile.
The 21 cm optical depth of an isolated object is the integral of the
absorption coefficient along the line of sight (Field 1959; Madau
et al. 1997; Furlanetto & Loeb 2002):

τ (ν) = 3hPc
3A10

32π3/2kB

1
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×
∫ +∞
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nH I(r)
b(r)TS(r)
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[
− (u(ν) − v̄(r))2

b2(r)

]
dx, (14)

where b(r) is the Doppler parameter of the gas, b(r) =√
2 kBTK (r)/mH, u(ν) ≡ c (ν − ν10)/ν10 and v̄(r) is bulk veloc-

ity of gas projected to the line of sight at the radius r. Inside of the
virial radius, the gas is thermalized, and v̄(r) = 0, while the gas
outside the virial radius has a bulk velocity contributed from both
the infall and the Hubble flow according to the ‘Infall Model’. The
coordinate x is related to the radius r by r2 = (αrvir)2 + x2, where
α is the impact parameter of the penetrating line of sight in units of
rvir.

The spin temperature of neutral hydrogen is defined by the rela-
tive occupation numbers of the two hyperfine structure levels, and
it is determined by three competing processes: (1) absorption of
CMB photons; (2) collisions with other hydrogen atoms, free elec-
trons and other species; and (3) scattering with UV photons. The
equilibrium spin temperature is given by (Field 1958; Furlanetto

et al. 2006)

T −1
S =

T −1
γ + xcT

−1
K + xαT

−1
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1 + xc + xα

, (15)

where Tγ = 2.726(1 + z) K is the CMB temperature at redshift z, TK

is the gas kinetic temperature and TC is the effective colour tempera-
ture of the UV radiation. In most cases, TC = TK due to the frequent
Lyα scattering (Furlanetto et al. 2006). The collisional coupling is
described by the coefficient xc, and xα is the coupling coefficient of
the Lyα pumping effect known as the Wouthuysen–Field coupling
(Wouthuysen 1952; Field 1958). The main contributions to xc are
H–H collisions and H-−e− collisions, and it can be written as

xc = xeH
c + xHH

c = neκ
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+ nH Iκ
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, (16)

where T' = 0.0682 K is the equivalent temperature of the energy
slitting of the 21 cm transition, and κeH

10 and κHH
10 are the de-excitation

rate coefficients in collisions with free electrons and hydrogen
atoms, respectively. These two coefficients at different temperatures
are tabulated in Furlanetto et al. (2006). The coupling coefficient xα

is proportional to the total scattering rate between Lyα photons and
hydrogen atoms,

xα = 4Pα

27A10

T'

Tγ

, (17)

where the scattering rate Pα is given by

Pα = cσα

ntot
α

(νD

= 4πσαJα. (18)

Here σα ≡ πe2

mec
fα where f α = 0.4162 is the oscillator strength of

the Lyα transition, ntot
α is the total number density of Lyα photons,

Jα is the number intensity of the Lyα photons, and (νD = (b/c) να

is the Doppler width with b being the Doppler parameter and να

being the Lyα frequency.
In addition to the global x̄i(z) and T IGM(z), to compute the line

profiles of the 21 cm absorptions by minihaloes and dwarf galaxies,
we need a detailed prescription of the ionization state, the tempera-
ture profile and the Lyα photon density in and around these objects.
We model, respectively, these properties of both minihaloes and
dwarf galaxies, as well as the intensity of Lyα background in the
following.
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Figure 2. The evolution of the global temperature (left-hand panel), the mean ionized fraction (central panel) and the filtering mass and Jeans mass (right
panel) of the IGM. The dashed curves are for f X = 0, and the solid curves from bottom to top in each panel are for f X = 0.05, f X = 0.1, f X = 0.2, f X = 1.0
and f X = 5.0, respectively. In the right-hand panel, the thin and thick curves illustrate the evolutions of the Jeans mass and the filtering mass, respectively.

σ = 5.67 × 10−5 erg cm−2 s−1 K−4 is the Stefan–Boltzmann con-
stant, and me is the electron mass. The evolutions of the IGM tem-
perature and the mean ionized fraction caused by X-rays are shown
in the left and central panels of Fig. 2 for several values of f X. The
case of f X = 0 is denoted by the dashed curves. It corresponds to
the situation in which there is no X-ray background, and the IGM
temperature decreases adiabatically with a mean ionized fraction of
3 × 10−4 which is the residual electron fraction left over after the
recombination. The solid curves from bottom to top in each panel
take f X = 0.05, f X = 0.1, f X = 0.2, f X = 1 and f X = 5, respec-
tively. Here, we also illustrate the corresponding evolutions of the
Jeans mass (thin curves) and the filtering mass (thick curves) in
the right-hand panel of Fig. 2. The filtering mass, which provides a
reasonable fit to the characteristic mass, is MF ∼ 106 M$ for f X !
0.2, MF ∼ 2 × 106 M$ for f X ∼ 1 and MF ∼ 5 × 106 M$ for f X ∼
5 at z ∼ 10.

The IGM creates a global decrement in the afterglow spectrum,
on top of which minihaloes and dwarf galaxies produce deep and
narrow absorption lines. The main broadening mechanism of each
absorption line is the thermal broadening with the Doppler profile.
The 21 cm optical depth of an isolated object is the integral of the
absorption coefficient along the line of sight (Field 1959; Madau
et al. 1997; Furlanetto & Loeb 2002):
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×
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where b(r) is the Doppler parameter of the gas, b(r) =√
2 kBTK (r)/mH, u(ν) ≡ c (ν − ν10)/ν10 and v̄(r) is bulk veloc-

ity of gas projected to the line of sight at the radius r. Inside of the
virial radius, the gas is thermalized, and v̄(r) = 0, while the gas
outside the virial radius has a bulk velocity contributed from both
the infall and the Hubble flow according to the ‘Infall Model’. The
coordinate x is related to the radius r by r2 = (αrvir)2 + x2, where
α is the impact parameter of the penetrating line of sight in units of
rvir.

The spin temperature of neutral hydrogen is defined by the rela-
tive occupation numbers of the two hyperfine structure levels, and
it is determined by three competing processes: (1) absorption of
CMB photons; (2) collisions with other hydrogen atoms, free elec-
trons and other species; and (3) scattering with UV photons. The
equilibrium spin temperature is given by (Field 1958; Furlanetto

et al. 2006)
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, (15)

where Tγ = 2.726(1 + z) K is the CMB temperature at redshift z, TK

is the gas kinetic temperature and TC is the effective colour tempera-
ture of the UV radiation. In most cases, TC = TK due to the frequent
Lyα scattering (Furlanetto et al. 2006). The collisional coupling is
described by the coefficient xc, and xα is the coupling coefficient of
the Lyα pumping effect known as the Wouthuysen–Field coupling
(Wouthuysen 1952; Field 1958). The main contributions to xc are
H–H collisions and H-−e− collisions, and it can be written as
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where T' = 0.0682 K is the equivalent temperature of the energy
slitting of the 21 cm transition, and κeH

10 and κHH
10 are the de-excitation

rate coefficients in collisions with free electrons and hydrogen
atoms, respectively. These two coefficients at different temperatures
are tabulated in Furlanetto et al. (2006). The coupling coefficient xα

is proportional to the total scattering rate between Lyα photons and
hydrogen atoms,

xα = 4Pα

27A10
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Tγ

, (17)

where the scattering rate Pα is given by

Pα = cσα

ntot
α

(νD

= 4πσαJα. (18)

Here σα ≡ πe2

mec
fα where f α = 0.4162 is the oscillator strength of

the Lyα transition, ntot
α is the total number density of Lyα photons,

Jα is the number intensity of the Lyα photons, and (νD = (b/c) να

is the Doppler width with b being the Doppler parameter and να

being the Lyα frequency.
In addition to the global x̄i(z) and T IGM(z), to compute the line

profiles of the 21 cm absorptions by minihaloes and dwarf galaxies,
we need a detailed prescription of the ionization state, the tempera-
ture profile and the Lyα photon density in and around these objects.
We model, respectively, these properties of both minihaloes and
dwarf galaxies, as well as the intensity of Lyα background in the
following.
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Figure 2. The evolution of the global temperature (left-hand panel), the mean ionized fraction (central panel) and the filtering mass and Jeans mass (right
panel) of the IGM. The dashed curves are for f X = 0, and the solid curves from bottom to top in each panel are for f X = 0.05, f X = 0.1, f X = 0.2, f X = 1.0
and f X = 5.0, respectively. In the right-hand panel, the thin and thick curves illustrate the evolutions of the Jeans mass and the filtering mass, respectively.

σ = 5.67 × 10−5 erg cm−2 s−1 K−4 is the Stefan–Boltzmann con-
stant, and me is the electron mass. The evolutions of the IGM tem-
perature and the mean ionized fraction caused by X-rays are shown
in the left and central panels of Fig. 2 for several values of f X. The
case of f X = 0 is denoted by the dashed curves. It corresponds to
the situation in which there is no X-ray background, and the IGM
temperature decreases adiabatically with a mean ionized fraction of
3 × 10−4 which is the residual electron fraction left over after the
recombination. The solid curves from bottom to top in each panel
take f X = 0.05, f X = 0.1, f X = 0.2, f X = 1 and f X = 5, respec-
tively. Here, we also illustrate the corresponding evolutions of the
Jeans mass (thin curves) and the filtering mass (thick curves) in
the right-hand panel of Fig. 2. The filtering mass, which provides a
reasonable fit to the characteristic mass, is MF ∼ 106 M$ for f X !
0.2, MF ∼ 2 × 106 M$ for f X ∼ 1 and MF ∼ 5 × 106 M$ for f X ∼
5 at z ∼ 10.

The IGM creates a global decrement in the afterglow spectrum,
on top of which minihaloes and dwarf galaxies produce deep and
narrow absorption lines. The main broadening mechanism of each
absorption line is the thermal broadening with the Doppler profile.
The 21 cm optical depth of an isolated object is the integral of the
absorption coefficient along the line of sight (Field 1959; Madau
et al. 1997; Furlanetto & Loeb 2002):
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where b(r) is the Doppler parameter of the gas, b(r) =√
2 kBTK (r)/mH, u(ν) ≡ c (ν − ν10)/ν10 and v̄(r) is bulk veloc-

ity of gas projected to the line of sight at the radius r. Inside of the
virial radius, the gas is thermalized, and v̄(r) = 0, while the gas
outside the virial radius has a bulk velocity contributed from both
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α is the impact parameter of the penetrating line of sight in units of
rvir.
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where Tγ = 2.726(1 + z) K is the CMB temperature at redshift z, TK

is the gas kinetic temperature and TC is the effective colour tempera-
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Lyα scattering (Furlanetto et al. 2006). The collisional coupling is
described by the coefficient xc, and xα is the coupling coefficient of
the Lyα pumping effect known as the Wouthuysen–Field coupling
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where T' = 0.0682 K is the equivalent temperature of the energy
slitting of the 21 cm transition, and κeH

10 and κHH
10 are the de-excitation

rate coefficients in collisions with free electrons and hydrogen
atoms, respectively. These two coefficients at different temperatures
are tabulated in Furlanetto et al. (2006). The coupling coefficient xα

is proportional to the total scattering rate between Lyα photons and
hydrogen atoms,

xα = 4Pα
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, (17)

where the scattering rate Pα is given by

Pα = cσα
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= 4πσαJα. (18)

Here σα ≡ πe2
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fα where f α = 0.4162 is the oscillator strength of

the Lyα transition, ntot
α is the total number density of Lyα photons,

Jα is the number intensity of the Lyα photons, and (νD = (b/c) να

is the Doppler width with b being the Doppler parameter and να

being the Lyα frequency.
In addition to the global x̄i(z) and T IGM(z), to compute the line

profiles of the 21 cm absorptions by minihaloes and dwarf galaxies,
we need a detailed prescription of the ionization state, the tempera-
ture profile and the Lyα photon density in and around these objects.
We model, respectively, these properties of both minihaloes and
dwarf galaxies, as well as the intensity of Lyα background in the
following.
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Methods

The 21-cm forest signal. Using high-redshift quasars or radio afterglows of GRBs as background

radio sources1,4, the HI in halos and in the IGM absorbs 21-cm photons along the line of sight. The

21-cm forest signal is the flux decrements due to 21-cm absorption with respect to the continuum

of a background radio source, which in the Rayleigh-Jeans limit is characterized by the differential

brightness temperature. In the optically-thin limit, which is usually the case for the 21-cm transi-

tion, the observed differential brightness of the 21-cm absorption signal, relative to the brightness

temperature of the background radiation T�(ŝ, ⌫0, z) at a specific direction ŝ and redshift z, is

�Tb(ŝ, ⌫) ⇡
TS(ŝ, z)� T�(ŝ, ⌫0, z)

1 + z
⌧⌫0(ŝ, z). (1)

Here ⌫0 = 1420.4 MHz is the rest-frame frequency of 21-cm photons, TS is the spin temperature

of the absorbing HI gas, and ⌧⌫0 is the 21-cm optical depth. In terms of the average gas properties

within each voxel, the 21-cm optical depth can be written as3,49,50

⌧⌫0(ŝ, z) ⇡ 0.0085 [1 + �(ŝ, z)] (1 + z)3/2

xHI(ŝ, z)

TS(ŝ, z)

� 
H(z)/(1 + z)

dvk/drk

�✓
⌦bh

2

0.022

◆✓
0.14

⌦mh
2

◆
,

(2)

where �(ŝ, z), xHI(ŝ, z), and H(z) are the gas overdensity, the neutral fraction of hydrogen gas,

and the Hubble parameter, respectively, and dvk/drk is the gradient of the proper velocity projected

to the line of sight.

The brightness temperature of the background radiation at the rest frame of the 21-cm ab-

sorption T�(ŝ, ⌫0, z) is related to the observed brightness temperature at a redshifted frequency ⌫,
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u LARGE SCALES: SEMI-NUMERICAL SIMULATION
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21cmFAST/islandFAST
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Extended Data Figure 4 | Neutral hydrogen overdensity profiles inside and outside

the virial radius of a halo at z = 9. The green, yellow and red lines correspond to halo

mass of 106M�, 107M� and 108M�, respectively.

Extended Data Figure 5 | Probability density distribution of the gas overdensity at z

= 17. The black solid line is the probability density distribution from the GADGET simulation

with a box size of 4 h
�1Mpc and 2 ⇥ 8003 gas and DM particles. The blue dashed line

is the one derived from our hybrid approach with the same resolution as the GADGET

simulation.
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Extended Data Figure 8 | Evolution of the global gas temperature with redshift. The

blue, green, yellow and red lines correspond to fX = 0, 0.1, 1 and 3, respectively.

Extended Data Figure 9 | Temperature profiles of gas inside and outside the virial

radii of halos at z = 9 with an un-heated IGM (fX = 0). The green, yellow and red lines

correspond to halo masses of 106M�, 107M� and 108M�, respectively.
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u Small scales: analytic modeling
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Theoretical challenge à multi-scale hybrid modeling



¡ The halos – Sheth-Tormen mass function (Sheth & Tormen 1999) & 

NFW density profile (Navarro, Frenk & White 1997) 

¡ Gas density profile 

� Inside – hydrostatic equilibrium

� Outside – “Infall Model” (Barkana 2004)

¡ Star Formation Criterion

l THE MODEL

where
a	star	burst	occurs	at	time	ts

not	able	to	form	stars

DGs

MHs

Modeling the small-scale structures during the EoR



� :	Hubble	expansion	+	background	X-rays	+	local	soft	X-rays

� Modeling	the	minihalos
� :	collisional	ionization	equilibrium	(CIE)

� :	Tvir (inside)	+	TIGM (outside)

� :	recombination	+	Lyα	background	(outside)

� :	recombination	+	Lyα	background	+	soft	X-ray	cascading
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� Modeling	the	dwarf	galaxies
� :	photonionizationix

KT
Ja

� The	X-ray	background
� Ionization	&	heating

(fX = 0, 0.05, 0.1, 0.2, 1, 5)

Modeling the small-scale structures during the EoR

See Xu, Ferrara, & Chen (2011) for details



minihalos dwarfs

The Coupling Effects and Spin Temperature

The earliest galaxies seen in 21 cm line 2033

Here, J̃0 is the fiducial Lyα intensity corresponding to a photon
density of one photon per hydrogen atom per log frequency,

J̃0 = cnH

4πνα

, (28)

where nH is the number density of hydrogen. Ēα = Ē(να) is aver-
aged over all the galaxies in the mass range of our consideration, and
we estimate this value from the spectrum data provided by Schaerer
(2003). In equation (27), F(z) is the fraction of mass bound in
star-forming haloes,

F (z) =
∫ Mmax

Mmin

M

ρ̄0
n(M, z)p$(M, z) dM, (29)

where n(M, z) is the halo mass function and p$(M, z) is the proba-
bility of having star formation for a halo with mass M at redshift z.
We derive p$(M, z) according to the star formation criterion given in
Section 2.2. At z = 20, Jα ≈ 3 × 10−11 cm−2 s−1 sr−1 Hz−1, while at
z = 10, it has increased to Jα ≈ 2 × 10−10 cm−2 s−1 sr−1 Hz−1 which
is already important for the Wouthuysen–Field coupling effect.

The problem of Lyα background propagating into minihaloes is
complicated. The situation in minihaloes would be different from
that in the IGM because of their higher column densities of neutral
hydrogen (typically NH I ∼ 1021 cm−2). The Lyα scattering cross-
section in a region of high density consists of a Doppler core with
a typical width of %νD = b/λα centred on the Lyα frequency, and
Lorentzian wings outside the core. Once a photon is redshifted or
scattered into the ‘core’ frequencies, the cross-section is large and its
mean-free path becomes very short and is spatially confined within
a small region with very long diffusion time. Thus, the photons
which eventually make up the Lyα background come from the blue
side of the Lyα line, at the edge of the ‘core’ and ‘wing’. In the
case of minihalo, however, these photons would be blocked at the
surface of the minihalo. The redshift across the minihalo is also too
small for bluer wing photons which is not blocked at the edge of
the minihalo to get redshifted into the core–wing boundary region
when they arrive at the centre of the halo.

Another possibility is to consider photons with such frequency
that their optical depth through the minihalo is about 1. Such a
photon would scatter once inside the halo. One scattering per photon
is of course negligible for the coupling effect in itself, but the
frequency of the photon would be changed after the scattering. If
the frequency increases, then the photon cross-section becomes even

smaller and would escape right away, but if the photon loses energy
during the collision and shifts to lower frequency, the cross-section
would be increased. Could such a change bring the photon from the
‘wing’ to the ‘core’? The frequency ν of such a wing photon is given
by NH I(rvir)σα(ν) = 1, where NH I(rvir) is the column density of the
minihalo from rvir to its centre, and σα(ν) is the scattering cross-
section on the Lyα damping wing. For typical thermal velocity of
the H atom in the minihalo, we estimate that the change of photon
frequency in one scattering dν < 2.2 × 1011 Hz, comparable to
the size of the core. On the other hand, the frequency distance
to the line centre for such a photon is (ν − να) ∼ 1013 Hz, so
dν ∼ 1 per cent (ν − να). Therefore, during one or even a few
favourable scatterings the photon could not enter the core and should
escape away. We conclude that with the exception of the surface,
the Lyα background could not affect the spin temperatures of the
minihaloes.

3 TH E 2 1 C M L I N E PRO F I L E S

With the detailed models of gas density, velocity profile, ioniza-
tion state, temperature evolution and the intensity of both local and
global Lyα photons for the minihaloes and the dwarf galaxies de-
scribed above, we are now ready to compute their spin temperature
profiles and 21 cm optical depths. In this section, we show our re-
sults of these detailed profiles for a variety of parameters. Although
it will be very challenging to resolve them with radio instruments in
the near future, these analyses help us explore the physical origins
of the line profiles and understand the physics behind.

3.1 The coupling effects and spin temperature

In Fig. 7, we plot the spin temperature as a function of distance
from the halo centre for a minihalo (left-hand panel) and a dwarf
galaxy (right-hand panel) of the same mass M = 107 M% at redshift
z = 10. We have taken f X = 0.1 as the fiducial value for the X-
ray background. In order to show the coupling effects, the kinetic
temperature of the gas and the CMB temperature are also plotted.
As we see clearly from the left-hand panel, the spin temperature
of the minihalo is coupled to the gas kinetic temperature (Tvir of
the halo) at the centre. The halo with M = 107 M% and z = 10
has Tvir ∼ 5000 K, and the gas is almost neutral in CIE. As a
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Figure 7. Spin temperature (dashed lines) and kinetic temperature (dot–dashed lines) profiles of a minihalo/dwarf galaxy with mass M = 107 M% at redshift
10. A fiducial value of f X = 0.1 is assumed for the X-ray background. The solid curves represent the CMB temperature. Left: the case for a minihalo in CIE.
Right: the case for a dwarf galaxy which is photonionized after a starburst with IMF model-A and metallicity Z = 10−7. The temperature curves are cut at the
H II radius of 7.02 rvir.
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Here, J̃0 is the fiducial Lyα intensity corresponding to a photon
density of one photon per hydrogen atom per log frequency,

J̃0 = cnH

4πνα

, (28)

where nH is the number density of hydrogen. Ēα = Ē(να) is aver-
aged over all the galaxies in the mass range of our consideration, and
we estimate this value from the spectrum data provided by Schaerer
(2003). In equation (27), F(z) is the fraction of mass bound in
star-forming haloes,

F (z) =
∫ Mmax

Mmin

M

ρ̄0
n(M, z)p$(M, z) dM, (29)

where n(M, z) is the halo mass function and p$(M, z) is the proba-
bility of having star formation for a halo with mass M at redshift z.
We derive p$(M, z) according to the star formation criterion given in
Section 2.2. At z = 20, Jα ≈ 3 × 10−11 cm−2 s−1 sr−1 Hz−1, while at
z = 10, it has increased to Jα ≈ 2 × 10−10 cm−2 s−1 sr−1 Hz−1 which
is already important for the Wouthuysen–Field coupling effect.

The problem of Lyα background propagating into minihaloes is
complicated. The situation in minihaloes would be different from
that in the IGM because of their higher column densities of neutral
hydrogen (typically NH I ∼ 1021 cm−2). The Lyα scattering cross-
section in a region of high density consists of a Doppler core with
a typical width of %νD = b/λα centred on the Lyα frequency, and
Lorentzian wings outside the core. Once a photon is redshifted or
scattered into the ‘core’ frequencies, the cross-section is large and its
mean-free path becomes very short and is spatially confined within
a small region with very long diffusion time. Thus, the photons
which eventually make up the Lyα background come from the blue
side of the Lyα line, at the edge of the ‘core’ and ‘wing’. In the
case of minihalo, however, these photons would be blocked at the
surface of the minihalo. The redshift across the minihalo is also too
small for bluer wing photons which is not blocked at the edge of
the minihalo to get redshifted into the core–wing boundary region
when they arrive at the centre of the halo.

Another possibility is to consider photons with such frequency
that their optical depth through the minihalo is about 1. Such a
photon would scatter once inside the halo. One scattering per photon
is of course negligible for the coupling effect in itself, but the
frequency of the photon would be changed after the scattering. If
the frequency increases, then the photon cross-section becomes even

smaller and would escape right away, but if the photon loses energy
during the collision and shifts to lower frequency, the cross-section
would be increased. Could such a change bring the photon from the
‘wing’ to the ‘core’? The frequency ν of such a wing photon is given
by NH I(rvir)σα(ν) = 1, where NH I(rvir) is the column density of the
minihalo from rvir to its centre, and σα(ν) is the scattering cross-
section on the Lyα damping wing. For typical thermal velocity of
the H atom in the minihalo, we estimate that the change of photon
frequency in one scattering dν < 2.2 × 1011 Hz, comparable to
the size of the core. On the other hand, the frequency distance
to the line centre for such a photon is (ν − να) ∼ 1013 Hz, so
dν ∼ 1 per cent (ν − να). Therefore, during one or even a few
favourable scatterings the photon could not enter the core and should
escape away. We conclude that with the exception of the surface,
the Lyα background could not affect the spin temperatures of the
minihaloes.

3 TH E 2 1 C M L I N E PRO F I L E S

With the detailed models of gas density, velocity profile, ioniza-
tion state, temperature evolution and the intensity of both local and
global Lyα photons for the minihaloes and the dwarf galaxies de-
scribed above, we are now ready to compute their spin temperature
profiles and 21 cm optical depths. In this section, we show our re-
sults of these detailed profiles for a variety of parameters. Although
it will be very challenging to resolve them with radio instruments in
the near future, these analyses help us explore the physical origins
of the line profiles and understand the physics behind.

3.1 The coupling effects and spin temperature

In Fig. 7, we plot the spin temperature as a function of distance
from the halo centre for a minihalo (left-hand panel) and a dwarf
galaxy (right-hand panel) of the same mass M = 107 M% at redshift
z = 10. We have taken f X = 0.1 as the fiducial value for the X-
ray background. In order to show the coupling effects, the kinetic
temperature of the gas and the CMB temperature are also plotted.
As we see clearly from the left-hand panel, the spin temperature
of the minihalo is coupled to the gas kinetic temperature (Tvir of
the halo) at the centre. The halo with M = 107 M% and z = 10
has Tvir ∼ 5000 K, and the gas is almost neutral in CIE. As a
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Figure 7. Spin temperature (dashed lines) and kinetic temperature (dot–dashed lines) profiles of a minihalo/dwarf galaxy with mass M = 107 M% at redshift
10. A fiducial value of f X = 0.1 is assumed for the X-ray background. The solid curves represent the CMB temperature. Left: the case for a minihalo in CIE.
Right: the case for a dwarf galaxy which is photonionized after a starburst with IMF model-A and metallicity Z = 10−7. The temperature curves are cut at the
H II radius of 7.02 rvir.
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result, the Lyα photons from recombination is totally negligible
and the collisional coupling dominates. As the radius increases, the
collisional coupling becomes less and less effective because of the
decreasing density, and the spin temperature gradually decouples
from the kinetic temperature. In addition to the dropping density,
the collisional de-excitation rate coefficients (κeH

10 and κHH
10 ) also

decrease due to the sharply decreasing kinetic temperature outside
rvir, dramatically reducing the collisional coupling effect. However,
the Lyα background at z = 10 is already strong enough to couple
the spin temperature closely to the kinetic temperature of the gas.
The recombination in the IGM also produces a significant amount
of Lyα photons. As a result, TS is always coupled to TK outside
minihaloes at z = 10.

As for the spin temperature profile of the dwarf galaxy in the
right-hand panel of Fig. 7, the IMF model-A and a metallicity of
Z = 10−7 are assumed. We stop the RH II and TK evolution at tvalue =
tH − tF, where tF is the most probable formation time of this halo,
and the spin temperature is also evaluated at this time. The left-
hand side cut-offs of these curves are just the position of RH II (7.02
rvir). As the H II radius of this galaxy is larger than the virial radius,
the low density and low temperature outside the H II region make
the collisional coupling very weak. In this case, the Lyα pumping
is always the dominating coupling effect. The global Lyα photons
from recombination and background flux dominate over the local
Lyα photons from soft X-ray cascading, and just as the case outside a
minihalo, the spin temperature sticks to the gas kinetic temperature.

Then, we investigate how the spin temperature changes with halo
mass and redshift, and plot two sets of curves for various halo masses
in Fig. 8, one (the thin set) for z = 10, and the other (the thick set)
for z = 20. A fiducial value of f X = 0.1 is assumed here. For the
minihaloes in the left-hand panel, the spin temperature is closely
coupled to the kinetic temperature outside the rvir for haloes at z =
10, in part because of the Lyα background, and in part because of
the accumulated Lyα photons from recombination in the IGM that
is partially ionized by the X-ray background. But at z = 20, both
the Lyα background and the X-ray background are still weak, and
TS lies between the TCMB and TK for gas around minihaloes at this
redshift. Inside the haloes, the density is larger at higher redshift, and
the collisional coupling effect is correspondingly stronger, so the
spin temperature is more tightly coupled to the virial temperature.
On the other hand, haloes are more concentrated at lower redshift,

and the slope of gas density profile is steeper. As a result the spin
temperature drops more rapidly with radius at lower redshift. One
different feature for the 108 M" halo is that its spin temperature
is effectively coupled to the gas kinetic temperature out to rvir,
because for this relatively high-mass halo, its virial temperature
(∼1.5 × 104 K for z = 10, and ∼2.3 × 104 K for z = 20) is high
enough to make the gas collisionally ionized (xi ∼ 52 per cent for
z = 10, and xi ∼ 98 per cent for z = 20). With this partially ionized
gas, Lyα photons from recombinations are effectively trapped, and
serve as a strong coupling agent.

In the right-hand panel of Fig. 8, the spin temperature profiles
for dwarf galaxies are all cut off at their H II radii at the left-hand
side. For the case of 106 M" dwarf galaxy, due to the much lower
star formation efficiency (f # ∼ 4 × 10−5, which increases to ∼0.03
for a galaxy with 108 M") (Salvadori & Ferrara 2009), it could
only create a very small H II region (RH II ∼ 0.008rvir for z = 10
and RH II ∼ 0.02rvir for z = 20). As for the galaxies with 107 M"
and 108 M", they have larger stellar masses and create larger H II

regions. So they have much less gas which could contribute to the
21 cm line absorption.

3.2 The absorption line profiles

Consider an isolated minihalo with mass M = 107 M" at redshift
z = 10 for which we compute the optical depth as a function of
frequency using equation (14). Results are shown in the left-hand
panel of Fig. 9 for different impact parameters of the lines of sight.
Very interesting features can be seen in the shown profiles. First,
there are two peaks which sandwiched the centre of the line for
impact parameters α = 1 and α = 3, showing horn-like profiles;
secondly, as the impact parameter increases, the peak optical depth
is not always decreasing. These two points are related issues, and
they are both caused by the infalling gas with low spin temperature
outside the minihalo.

To clearly see the origin of these interesting profiles, we have
to understand the different contributions to the 21 cm absorption
from the gas located at different radii. Because of the infall, the
absorption line produced by the gas at the far side of the halo is
blueshifted, while that produced by the gas at the near side of the
halo is redshifted. Let νp(r) be the peak frequency of optical depth
created by gas located at radius r, and according to the integrand in
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Figure 8. Spin temperature profiles of minihaloes/dwarf galaxies of different masses: M = 106 M" (solid curves), M = 107 M" (dashed curves) and M =
108 M" (dot–dashed curves), respectively. A fiducial value of f X = 0.1 is assumed for the X-ray background. The set of thick curves is for redshift 20, and the
set of thin curves is for redshift 10. Left: the case for minihaloes in CIE. Right: the case for dwarf galaxies that are photonionized after a starburst with IMF
model-A and metallicity Z = 10−7.
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result, the Lyα photons from recombination is totally negligible
and the collisional coupling dominates. As the radius increases, the
collisional coupling becomes less and less effective because of the
decreasing density, and the spin temperature gradually decouples
from the kinetic temperature. In addition to the dropping density,
the collisional de-excitation rate coefficients (κeH

10 and κHH
10 ) also

decrease due to the sharply decreasing kinetic temperature outside
rvir, dramatically reducing the collisional coupling effect. However,
the Lyα background at z = 10 is already strong enough to couple
the spin temperature closely to the kinetic temperature of the gas.
The recombination in the IGM also produces a significant amount
of Lyα photons. As a result, TS is always coupled to TK outside
minihaloes at z = 10.

As for the spin temperature profile of the dwarf galaxy in the
right-hand panel of Fig. 7, the IMF model-A and a metallicity of
Z = 10−7 are assumed. We stop the RH II and TK evolution at tvalue =
tH − tF, where tF is the most probable formation time of this halo,
and the spin temperature is also evaluated at this time. The left-
hand side cut-offs of these curves are just the position of RH II (7.02
rvir). As the H II radius of this galaxy is larger than the virial radius,
the low density and low temperature outside the H II region make
the collisional coupling very weak. In this case, the Lyα pumping
is always the dominating coupling effect. The global Lyα photons
from recombination and background flux dominate over the local
Lyα photons from soft X-ray cascading, and just as the case outside a
minihalo, the spin temperature sticks to the gas kinetic temperature.

Then, we investigate how the spin temperature changes with halo
mass and redshift, and plot two sets of curves for various halo masses
in Fig. 8, one (the thin set) for z = 10, and the other (the thick set)
for z = 20. A fiducial value of f X = 0.1 is assumed here. For the
minihaloes in the left-hand panel, the spin temperature is closely
coupled to the kinetic temperature outside the rvir for haloes at z =
10, in part because of the Lyα background, and in part because of
the accumulated Lyα photons from recombination in the IGM that
is partially ionized by the X-ray background. But at z = 20, both
the Lyα background and the X-ray background are still weak, and
TS lies between the TCMB and TK for gas around minihaloes at this
redshift. Inside the haloes, the density is larger at higher redshift, and
the collisional coupling effect is correspondingly stronger, so the
spin temperature is more tightly coupled to the virial temperature.
On the other hand, haloes are more concentrated at lower redshift,

and the slope of gas density profile is steeper. As a result the spin
temperature drops more rapidly with radius at lower redshift. One
different feature for the 108 M" halo is that its spin temperature
is effectively coupled to the gas kinetic temperature out to rvir,
because for this relatively high-mass halo, its virial temperature
(∼1.5 × 104 K for z = 10, and ∼2.3 × 104 K for z = 20) is high
enough to make the gas collisionally ionized (xi ∼ 52 per cent for
z = 10, and xi ∼ 98 per cent for z = 20). With this partially ionized
gas, Lyα photons from recombinations are effectively trapped, and
serve as a strong coupling agent.

In the right-hand panel of Fig. 8, the spin temperature profiles
for dwarf galaxies are all cut off at their H II radii at the left-hand
side. For the case of 106 M" dwarf galaxy, due to the much lower
star formation efficiency (f # ∼ 4 × 10−5, which increases to ∼0.03
for a galaxy with 108 M") (Salvadori & Ferrara 2009), it could
only create a very small H II region (RH II ∼ 0.008rvir for z = 10
and RH II ∼ 0.02rvir for z = 20). As for the galaxies with 107 M"
and 108 M", they have larger stellar masses and create larger H II

regions. So they have much less gas which could contribute to the
21 cm line absorption.

3.2 The absorption line profiles

Consider an isolated minihalo with mass M = 107 M" at redshift
z = 10 for which we compute the optical depth as a function of
frequency using equation (14). Results are shown in the left-hand
panel of Fig. 9 for different impact parameters of the lines of sight.
Very interesting features can be seen in the shown profiles. First,
there are two peaks which sandwiched the centre of the line for
impact parameters α = 1 and α = 3, showing horn-like profiles;
secondly, as the impact parameter increases, the peak optical depth
is not always decreasing. These two points are related issues, and
they are both caused by the infalling gas with low spin temperature
outside the minihalo.

To clearly see the origin of these interesting profiles, we have
to understand the different contributions to the 21 cm absorption
from the gas located at different radii. Because of the infall, the
absorption line produced by the gas at the far side of the halo is
blueshifted, while that produced by the gas at the near side of the
halo is redshifted. Let νp(r) be the peak frequency of optical depth
created by gas located at radius r, and according to the integrand in
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Figure 8. Spin temperature profiles of minihaloes/dwarf galaxies of different masses: M = 106 M" (solid curves), M = 107 M" (dashed curves) and M =
108 M" (dot–dashed curves), respectively. A fiducial value of f X = 0.1 is assumed for the X-ray background. The set of thick curves is for redshift 20, and the
set of thin curves is for redshift 10. Left: the case for minihaloes in CIE. Right: the case for dwarf galaxies that are photonionized after a starburst with IMF
model-A and metallicity Z = 10−7.
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Figure 9. Optical depth profiles of a minihalo/dwarf galaxy with mass M = 107 M! at redshift 10. All the curves take f X = 0.1. The impact parameters of the
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equation (14), the absorption is shifted from the line centre by

νp(r) − ν10 = v̄(r)
c

ν10. (30)

Considering a line of sight passing through a minihalo with M =
107 M! and z = 10 from the centre (α = 0), we divide the integration
into segments, each of which has a contribution from a length of
1rvir on the line of sight. Then, we plot every absorption line created
by one segment in Fig. 10. In the upper panel, the absorption line
produced by the gas inside of rvir is shown as the dashed curve,
the solid lines from right to left correspond to the absorptions by
segments of (1 − 2) rvir, (2 − 3) rvir, (3 − 4) rvir, (4 − 5) rvir,
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Figure 10. Different contributions to the optical depth from the gas at
different radii. Upper panel: the absorption by gas inside of rvir is shown as
the dashed line; the solid lines from right to left correspond to the absorptions
by segments of (1 − 2) rvir, (2 − 3) rvir, (3 − 4) rvir, (4 − 5) rvir, (5 −
6) rvir and (6 − 7) rvir, respectively, and the dot–dashed line represents the
absorption by the segment of (7–8)rvir. Bottom panel: the 12 solid lines from
left to right correspond to the absorptions by segments of 1rvir each starting
from 8rvir, and the last curve represents the integral absorption from 20 to
100rvir.

(5 − 6) rvir and (6 − 7) rvir, respectively, and the dot–dashed line
represents the absorption by the segment of (7 − 8) rvir. In the
bottom panel, the 12 solid lines from left to right correspond to the
absorptions by segments of 1rvir each starting from 8rvir, and the
last curve on the right represents the integral absorption from 20 to
100rvir.

As can be seen clearly from Fig. 10, the virialized gas inside the
minihalo has no bulk velocity, and the peak optical depth is located
at the centre. The gas at (1 − 2) rvir has the highest infall velocity,
and the corresponding profile lies at the largest distance to the line
centre in the upper panel. As the radius increases, the τ ν profile
gets closer to the line centre because of the lower infall velocity,
and the optical depth decreases slowly with the decreasing density.
One interesting feature is that there is a special position where the
total velocity of the gas changes from negative (infall dominated) to
positive (Hubble flow dominated), and at this turning point the two
absorption lines created by the two segments on both sides of the
minihalo converge into one at the line centre, and they contribute
substantially to the central optical depth. For the minihalo with
M = 107 M! and z = 10, this turning point lies at 7.3rvir, and
consequently the absorption by the segment of (7 − 8) rvir peaks at
the line centre. After that, the τ ν profiles that come from larger radii
leave the line centre again, because the infall velocity becomes even
smaller and the total velocity (in the same direction as the Hubble
flow) becomes more and more positive. Finally, when it goes out
of the region influenced by the minihalo’s gravity, and the density
drops to the cosmic mean value, we recover the IGM optical depth.

The line profiles in Fig. 9 are better understood by noting that
each is an integral of contributions from different radii. A substan-
tial contribution to the optical depth comes from the outer region,
because the gas outside rvir has lower spin temperature. Especially,
the gas in the infalling region on the far (near) side of the halo shares
the same bulk velocity with the gas out of the region on the near
(far) side, and they absorb the 21 cm photons at the same frequency.
Therefore, the optical depth at the frequency range corresponding
to the infalling region is increased a lot. In addition, the line profile
gets narrower with lower temperature compared to the gas inside
the halo, which further increases the peak value. As the impact
parameter α increases from 0 to 1, more contribution comes from
this cold region, so the peak optical depth increases. Also, the infall
velocity shifts the peaks away from the centre, and results in the
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black curve is for α = 30. Left: the case for a minihalo in CIE. Right: the case for a dwarf galaxy which is photonionized after a starburst with IMF model-A
and metallicity Z = 10−7.

equation (14), the absorption is shifted from the line centre by

νp(r) − ν10 = v̄(r)
c

ν10. (30)

Considering a line of sight passing through a minihalo with M =
107 M! and z = 10 from the centre (α = 0), we divide the integration
into segments, each of which has a contribution from a length of
1rvir on the line of sight. Then, we plot every absorption line created
by one segment in Fig. 10. In the upper panel, the absorption line
produced by the gas inside of rvir is shown as the dashed curve,
the solid lines from right to left correspond to the absorptions by
segments of (1 − 2) rvir, (2 − 3) rvir, (3 − 4) rvir, (4 − 5) rvir,
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Figure 10. Different contributions to the optical depth from the gas at
different radii. Upper panel: the absorption by gas inside of rvir is shown as
the dashed line; the solid lines from right to left correspond to the absorptions
by segments of (1 − 2) rvir, (2 − 3) rvir, (3 − 4) rvir, (4 − 5) rvir, (5 −
6) rvir and (6 − 7) rvir, respectively, and the dot–dashed line represents the
absorption by the segment of (7–8)rvir. Bottom panel: the 12 solid lines from
left to right correspond to the absorptions by segments of 1rvir each starting
from 8rvir, and the last curve represents the integral absorption from 20 to
100rvir.

(5 − 6) rvir and (6 − 7) rvir, respectively, and the dot–dashed line
represents the absorption by the segment of (7 − 8) rvir. In the
bottom panel, the 12 solid lines from left to right correspond to the
absorptions by segments of 1rvir each starting from 8rvir, and the
last curve on the right represents the integral absorption from 20 to
100rvir.

As can be seen clearly from Fig. 10, the virialized gas inside the
minihalo has no bulk velocity, and the peak optical depth is located
at the centre. The gas at (1 − 2) rvir has the highest infall velocity,
and the corresponding profile lies at the largest distance to the line
centre in the upper panel. As the radius increases, the τ ν profile
gets closer to the line centre because of the lower infall velocity,
and the optical depth decreases slowly with the decreasing density.
One interesting feature is that there is a special position where the
total velocity of the gas changes from negative (infall dominated) to
positive (Hubble flow dominated), and at this turning point the two
absorption lines created by the two segments on both sides of the
minihalo converge into one at the line centre, and they contribute
substantially to the central optical depth. For the minihalo with
M = 107 M! and z = 10, this turning point lies at 7.3rvir, and
consequently the absorption by the segment of (7 − 8) rvir peaks at
the line centre. After that, the τ ν profiles that come from larger radii
leave the line centre again, because the infall velocity becomes even
smaller and the total velocity (in the same direction as the Hubble
flow) becomes more and more positive. Finally, when it goes out
of the region influenced by the minihalo’s gravity, and the density
drops to the cosmic mean value, we recover the IGM optical depth.

The line profiles in Fig. 9 are better understood by noting that
each is an integral of contributions from different radii. A substan-
tial contribution to the optical depth comes from the outer region,
because the gas outside rvir has lower spin temperature. Especially,
the gas in the infalling region on the far (near) side of the halo shares
the same bulk velocity with the gas out of the region on the near
(far) side, and they absorb the 21 cm photons at the same frequency.
Therefore, the optical depth at the frequency range corresponding
to the infalling region is increased a lot. In addition, the line profile
gets narrower with lower temperature compared to the gas inside
the halo, which further increases the peak value. As the impact
parameter α increases from 0 to 1, more contribution comes from
this cold region, so the peak optical depth increases. Also, the infall
velocity shifts the peaks away from the centre, and results in the
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horn-like profile. As α increases further up to 3, the infall velocity
decreases, and the two peaks move closer to each other. For α larger
than the radius of the velocity turning point, the two peaks merge
together and decrease slowly to the IGM optical depth as α → ∞.

The 21 cm profiles for an isolated dwarf galaxy for various impact
parameters are shown in the right-hand panel of Fig. 9. Just as
before, the spin temperature and the optical depth profiles are all
evaluated at the time tvalue = tH − tF, and the most probable value
for zF is used. Thus we get an upper limit on the ionization, heating
and Lyα coupling effects. The line profiles are completely different
from the case of minihaloes. The horn-like profiles disappears and
the absorption is strongly reduced for small impact parameters. The
dwarf galaxy with M = 107 M$ and z = 10 has an H II radius of
7.3rvir, which is close to the turning point of the gas velocity. In
other words, the hydrogen atoms inside rvir and those within the
infalling region are totally ionized, erasing the absorption features
contributed by hydrogen in this region. Therefore, there will be only
one peak at the centre no matter what the impact parameter is, and
the optical depth is reduced for lines of sight which penetrate the H II

region. As the impact parameter α increases, the optical depth first
increases because more neutral gas near the H II region is intercepted
by the line of sight. It reaches a maximum when α ≈ RH II and then
drops, approaching the IGM optical depth.

We also show the optical depth profiles for different halo masses
and redshifts in Fig. 11. Here we also take f X = 0.1 for the X-
ray background. In the left-hand panel, the case for minihaloes is
shown. As we expected, the line profiles are broader for haloes with
greater masses. That is because, on one hand, the virial temperature
is higher for haloes of greater masses, which results in a broader
Doppler profile for the absorption by gas inside the halo, and on
the other hand, more massive haloes have stronger gravitational
influence on the surrounding gas, and the induced higher infalling
velocity shifts the absorption line farther from the line centre. In
general, the absorption is stronger at higher redshift. The reason
is that the IGM is denser at higher redshift and, also, the X-ray
background is gradually set up as redshift decreases, and it heats
and partially ionizes the gas in the IGM. As the frequency gets
far from the line centre, the optical depths of all the minihaloes
approach to the mean IGM value.

In the right-hand panel of Fig. 11, we show the 21 cm line profiles
for dwarf galaxies with the same masses and redshifts as those for

minihaloes in the left-hand panel. Starbursts with IMF model-A and
metallicity Z = 10−7 are assumed. An interesting feature emerges
for the galaxy with 108 M$. Because of the higher star formation
efficiency associated with higher mass galaxies, this dwarf galaxy
creates a large H II region (RH II ∼ 38rvir for z = 10 and RH II ∼ 34rvir

for z = 20) erasing all the absorption inside of it. As a result, a broad
optical depth trough is produced instead of an absorption line! In
the case of IMF model-C, the dwarf galaxy of the same mass could
ionize an even larger H II region and hence could result in an even
broader optical depth trough.

All the line profiles above are computed assuming that the mini-
halo or the dwarf galaxy is isolated. In real cosmic structures, a
halo is surrounded by other haloes, and if we integrate the optical
depth to a distance larger than the mean separation D of the haloes,
we will probably hit another halo. So the integration should only
be considered as reliable up to a distance of D/2. In practice, a
108 M$ halo, for example, might have many smaller haloes closer
to it than another 108 M$ halo. Therefore, it is the mean separation
of the smallest haloes we are considering, i.e. the haloes with M =
106 M$ (for f X ! 0.2), that determines the integration limit. We
denote this mean separation as Dmin. The maximum impact param-
eter of a line of sight should also be αmax = Dmin/2. Integrating
the optical depth up to Dmin/2, we plot optical depth profiles of a
minihalo (blue dashed curve) and a dwarf galaxy (black solid curve)
with M = 107 M$ at z = 10 in Fig. 12. The line of sight is assumed
to be passing through the minihalo/dwarf galaxy from the centre,
and we set f X = 0.1. We see that the dwarf galaxy only produces
a narrow and weak absorption line at the centre, because for this
galaxy, only the gas in a sphere between the H II radius (∼7.3rvir)
and Dmin/2 (∼9.1rvir) contributes to the absorption. In reality, how-
ever, the optical depth will not drop to zero at the boundaries of
the absorption line but will connect with another line created by a
neighbouring halo. In addition, as we mentioned before, the cluster-
ing of dwarf galaxies will extend their H II regions. Similarly, some
minihaloes will be clustered around the dwarfs, and the surround-
ing gas in the infall region may be ionized, even if the minihaloes
themselves can self-shield. Therefore, the clustering can reduce the
21 cm optical depth of some minihaloes and dwarf galaxies. Al-
though the problem should ideally include the clustering properties
of early galaxies, it is beyond the scope of this paper to include such
features.
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Figure 11. Optical depth profiles of minihaloes/dwarf galaxies with different masses: M = 106 M$ (solid curves), M = 107 M$ (dashed curves) and M =
108 M$ (dotted curves), respectively. The thick curves are for redshift 20, while the thin curves are for redshift 10. All the curves take f X = 0.1. Left: the case
for minihaloes in CIE. Right: the case for dwarf galaxies that are photonionized after a starburst with IMF model-A and metallicity Z = 10−7. The impact
parameter shown here is α = 0.
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horn-like profile. As α increases further up to 3, the infall velocity
decreases, and the two peaks move closer to each other. For α larger
than the radius of the velocity turning point, the two peaks merge
together and decrease slowly to the IGM optical depth as α → ∞.

The 21 cm profiles for an isolated dwarf galaxy for various impact
parameters are shown in the right-hand panel of Fig. 9. Just as
before, the spin temperature and the optical depth profiles are all
evaluated at the time tvalue = tH − tF, and the most probable value
for zF is used. Thus we get an upper limit on the ionization, heating
and Lyα coupling effects. The line profiles are completely different
from the case of minihaloes. The horn-like profiles disappears and
the absorption is strongly reduced for small impact parameters. The
dwarf galaxy with M = 107 M$ and z = 10 has an H II radius of
7.3rvir, which is close to the turning point of the gas velocity. In
other words, the hydrogen atoms inside rvir and those within the
infalling region are totally ionized, erasing the absorption features
contributed by hydrogen in this region. Therefore, there will be only
one peak at the centre no matter what the impact parameter is, and
the optical depth is reduced for lines of sight which penetrate the H II

region. As the impact parameter α increases, the optical depth first
increases because more neutral gas near the H II region is intercepted
by the line of sight. It reaches a maximum when α ≈ RH II and then
drops, approaching the IGM optical depth.

We also show the optical depth profiles for different halo masses
and redshifts in Fig. 11. Here we also take f X = 0.1 for the X-
ray background. In the left-hand panel, the case for minihaloes is
shown. As we expected, the line profiles are broader for haloes with
greater masses. That is because, on one hand, the virial temperature
is higher for haloes of greater masses, which results in a broader
Doppler profile for the absorption by gas inside the halo, and on
the other hand, more massive haloes have stronger gravitational
influence on the surrounding gas, and the induced higher infalling
velocity shifts the absorption line farther from the line centre. In
general, the absorption is stronger at higher redshift. The reason
is that the IGM is denser at higher redshift and, also, the X-ray
background is gradually set up as redshift decreases, and it heats
and partially ionizes the gas in the IGM. As the frequency gets
far from the line centre, the optical depths of all the minihaloes
approach to the mean IGM value.

In the right-hand panel of Fig. 11, we show the 21 cm line profiles
for dwarf galaxies with the same masses and redshifts as those for

minihaloes in the left-hand panel. Starbursts with IMF model-A and
metallicity Z = 10−7 are assumed. An interesting feature emerges
for the galaxy with 108 M$. Because of the higher star formation
efficiency associated with higher mass galaxies, this dwarf galaxy
creates a large H II region (RH II ∼ 38rvir for z = 10 and RH II ∼ 34rvir

for z = 20) erasing all the absorption inside of it. As a result, a broad
optical depth trough is produced instead of an absorption line! In
the case of IMF model-C, the dwarf galaxy of the same mass could
ionize an even larger H II region and hence could result in an even
broader optical depth trough.

All the line profiles above are computed assuming that the mini-
halo or the dwarf galaxy is isolated. In real cosmic structures, a
halo is surrounded by other haloes, and if we integrate the optical
depth to a distance larger than the mean separation D of the haloes,
we will probably hit another halo. So the integration should only
be considered as reliable up to a distance of D/2. In practice, a
108 M$ halo, for example, might have many smaller haloes closer
to it than another 108 M$ halo. Therefore, it is the mean separation
of the smallest haloes we are considering, i.e. the haloes with M =
106 M$ (for f X ! 0.2), that determines the integration limit. We
denote this mean separation as Dmin. The maximum impact param-
eter of a line of sight should also be αmax = Dmin/2. Integrating
the optical depth up to Dmin/2, we plot optical depth profiles of a
minihalo (blue dashed curve) and a dwarf galaxy (black solid curve)
with M = 107 M$ at z = 10 in Fig. 12. The line of sight is assumed
to be passing through the minihalo/dwarf galaxy from the centre,
and we set f X = 0.1. We see that the dwarf galaxy only produces
a narrow and weak absorption line at the centre, because for this
galaxy, only the gas in a sphere between the H II radius (∼7.3rvir)
and Dmin/2 (∼9.1rvir) contributes to the absorption. In reality, how-
ever, the optical depth will not drop to zero at the boundaries of
the absorption line but will connect with another line created by a
neighbouring halo. In addition, as we mentioned before, the cluster-
ing of dwarf galaxies will extend their H II regions. Similarly, some
minihaloes will be clustered around the dwarfs, and the surround-
ing gas in the infall region may be ionized, even if the minihaloes
themselves can self-shield. Therefore, the clustering can reduce the
21 cm optical depth of some minihaloes and dwarf galaxies. Al-
though the problem should ideally include the clustering properties
of early galaxies, it is beyond the scope of this paper to include such
features.
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Figure 11. Optical depth profiles of minihaloes/dwarf galaxies with different masses: M = 106 M$ (solid curves), M = 107 M$ (dashed curves) and M =
108 M$ (dotted curves), respectively. The thick curves are for redshift 20, while the thin curves are for redshift 10. All the curves take f X = 0.1. Left: the case
for minihaloes in CIE. Right: the case for dwarf galaxies that are photonionized after a starburst with IMF model-A and metallicity Z = 10−7. The impact
parameter shown here is α = 0.
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curves), purely the noise (fuchsia curves) and an observed spectrum (signal and noise, blue curves). The solid lines correspond to the median values while
the shaded regions indicate the 68 per cent range computed from 1000 mock spectra. Spectra were modelled for an observation of a background source with
(147 = 64.2 mJy and UR = �0.44 by the uGMRT over Cint = 50 hr (left panel) and 500 hr (middle panel) and by the SKA1-low over 50 hr (right panel). A
two-sided Kolmogorov-Smirnov test ?-value for the observed and noise distribution is shown too.

Figure 6. 1D power spectrum from a single 50 cMpc long 21-cm forest
spectrum in the fiducial model of the IGM with log10 5X = �2 and hGHI i =
0.25. The solid orange curve shows the median power spectrum of the signal
and the orange shaded region marks 68 per cent range from 1000 mock
spectra. The dashed fuchsia curve shows the power spectrum of the noise
assuming an observation targeting (147 = 64.2 mJy and UR = �0.44 quasar
with uGMRT over Cint = 500 hr (top curve) and SKA1-low over Cint = 50 hr.

Besides the effect of instrumental features on the detectability
of the 21-cm forest power spectrum, we also explore the effect of
various physical mechanisms. The position of individual absorption
features in the 21-cm forest in the redshift space can be shifted and
their depth can be significantly boosted by the peculiar velocity of
the gas (Semelin 2016; Šoltinský et al. 2021). Both of these can
potentially affect the %21. We test this in Appendix A and find that
while the %21 is not affected at : . 20 MHz�1 (for our fiducial
model of log10 5X = �2, hGHIi = 0.25), at smaller scales the signal is
boosted when we include Epec in our calculation. However, the power
spectrum that is affected by redshift space distortions significantly is
either below the noise limit or even not accessible due to the limited
spectral resolution.

To acquire the intuition of how the thermal and ionization state
of the IGM affect the %21, in Fig. 7 we plot the median values of
the %21 from 1000 LOS with fixed value of one of the parameters
governing the properties of the IGM while varying the other. In the
top panel we fix hGHIi = 0.25 and the colormap shows the %21 for
different log10 5X. As expected, the higher the 5X, and hence the
more preheating of the IGM by X-rays, the more suppressed the
signal becomes. Similarly, the signal is suppressed if the IGM is

Figure 7. Top panel: Median 21-cm forest power spectrum, %21 from 1000
realizations of LOS for fixed hGHI i = 0.25 and varying log10 5X (values
shown in colorbar). Bottom panel: Same as the top panel but with fixed
log10 5X = �2 and varying hGHI i .

more ionized as can be seen in the bottom panel of Fig. 7, in which
we fix the log10 5X = �2 and vary the hGHIi (colormap). The shape
of the %21 as a function of : does not change significantly, however
the slope changes at : & 50 MHz�1 bin.

4 CONSTRAINING THE THERMAL AND IONIZATION
STATE OF THE INTERGALACTIC MEDIUM

Given this strong sensitivity of the %21 on both the log10 5X and
the hGHIi, here we explore the potential of the %21 measurements to
constrain both the thermal and ionization state of the IGM at I = 6.
It is important to note that the 21-cm line is one of the few probes

MNRAS 000, 1–14 (2023)

Šoltinský et al. 2025Xu YD et al. 2009, 2010, 2011

Sensitive probe to TIGM and xHI à properties of the first galaxies & black holes 



Shimabukuro et al. 2014

u Unique probe to small–scale structures at cosmic dawn (CD) à Dark Matter properties at CD

CDM
WIMP/AXION

WDM
Sterile 
Neutrino

HDW
3 Neutrinos

Physics with 21-cm Forest

6

FIG. 6: Abundance of the 21cm absorption lines at z=10
without relative velocity(solid line) and with relative veloc-
ity(dashed line).

IV. RESULTS

In Fig.6, we show the abundance of the 21cm absorp-
tion lines at z = 10 as a function of the optical depth
per redshift interval along a line of sight and per optical
depth. We show the abundance of the 21cm absorption
lines with and without the relative velocity for illustra-
tion. The abundance of the 21cm absorption lines with-
out the relative velocity is smaller than in the case that
does not include the relative velocity by around 1 order
of magnitude. In the absence of the relative velocity, the
abundance of the 21cm absorption lines per line-of-sight
direction is around O(10) at τ ! 0.1, whereas, in the
presence of relative velocity, it decreases to around O(1).
The impacts of relative velocity on the 21cm forest ap-
pear via the suppression of the mass function (or matter
power spectrum) and the enhancement of the Jeans mass.
As shown by Fig.2, the presence of relative velocity sup-
presses the halo mass function and, as shown in Eq.(15),
the suppression of the mass function reduces the number
of 21cm absorption lines. As shown in Eq.(17), the Jeans
mass is roughly 20 times larger due to the relative veloc-
ity. The Jeans mass affects the minimum minihalo mass
which contributes to the abundance of 21cm absorption
lines. Such a change can substantially reduce the 21cm
signals because the abundance of the 21cm absorption
lines is more significantly affected by the smaller miniha-
los with a smaller spin temperature and a larger optical
depth, rather than by the bigger minihalos [14].
In Fig.7, we show the abundance of 21cm absorption

lines at different redshifts.
At a higher redshift, the relative suppression of the

21cm absorption line abundance is more prominent. One
reason for this is the halo mass function. At a higher
redshift, the relative velocity ∝ (1 + z) is bigger and a
smaller halo has a less-deep gravitational potential well.
Another reason for the abundance is the Jeans mass. In
the absence of X-ray heating, the IGM gas temperature
scales as ∝ (1 + z)2.[Eq.(17)].
At a lower redshift, the number of halos increases, and

the gas temperature (Jeans mass) decreases. Thus, the

FIG. 7: Abundance of the 21cm absorption lines at different
redshifts.

number of 21cm absorption lines increases. At z = 11
and z = 15, the abundance of the 21cm absorption lines
is O(1) − O(10) in the absence of the relative velocity.
Taking the relative velocity into account, we can see from
the figures that the abundance of the 21cm absorption
lines decreases while keeping O(1) at a lower τ (up to
∼ 0.03) at z = 11. At z = 20, even in the presence of the
relative velocity, the number of 21cm absorption lines is
less than O(0.1) for any optical depth and it becomes less
than O(10−4) if the effect of relative velocity is included.
For illustration, we have shown the 21cm absorption

abundance where the minimum minihalo mass is deter-
mined by the Jeans mass with TIGM = 2K at z = 10 and
the kinetic temperature evolves as ∝ (1 + z)2. We next
show the temperature dependence of the number of 21cm
absorption lines. Fig.8 shows the abundance of the 21cm
absorption when the IGM temperature is equal to the
CMB temperature at z = 10 (TIGM = 30K). When the
kinetic temperature becomes larger, the Jeans mass be-
comes larger. In our formalism, the minimum minihalo
mass is determined by the Jeans mass. The contribu-
tions to 21cm absorption lines mainly come from smaller
minihalos (which possess a larger optical depth than the
larger minihalos [14]), and a larger kinetic temperature
of the IGM reduces the abundance of 21cm absorption
lines. In Fig.8, for TIGM = TCMB, we can see that the
abundance of the 21cm forest reduces to less than O(10)
in both cases with and without the relative velocity. In
particular, the abundance of the 21cm absorption lines is
less than 1 if we take the relative velocity into account.
We also find that the abundance of the 21cm absorp-
tion lines including the relative velocity with TIGM = 2K
is very similar to that of the 21cm absorption lines not
including the relative velocity with TIGM = TCMB. Al-
though this behavior is just a coincidence in this example,
it illustrates that raising the IGM temperature and in-
cluding the relative velocity generates the degeneracy for
the abundance of the 21cm absorption lines.
In addition, we also consider the effect of X-ray heating

on the 21cm forest in Fig.9. The energy injections into
the IGM from X-ray sources are associated with X-ray ef-

à the neutrino mass, 
à the running spectral index, 
à the relative velocity between 

dark matter and baryons
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Figure 1 | The synthetic spectra of optical depth (upper panels) and brightness

temperature (lower panels) for a neutral patch of 10 comoving Mpc along the line of

sight, for an un-heated IGM (fX = 0) at z = 9. In each row, the four columns correspond

to the CDM model, and the WDM models with mWDM = 10 keV, 6 keV, and 3 keV, from left

to right respectively. In the lower panels, the green, yellow, and red spectra correspond to

the background source flux densities of S150 = 1 mJy, 10 mJy, and 100 mJy, respectively.

The spectra have been smoothed with a channel width of 1 kHz, and the dotted and

dashed lines are the thermal noise levels �T
N expected for SKA1-LOW and SKA2-LOW

respectively, with an integration time of �t = 100 hr.
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Figure 2 | The synthetic spectra of optical depth (upper panels) and brightness

temperature (lower panels) for a neutral patch of 10 comoving Mpc along the line

of sight, for the CDM model at z = 9. In each row, the four columns correspond to fX

= 0, 0.1, 1, and 3, from left to right respectively. In the lower panels, the green, yellow,

and red spectra correspond to S150 = 1 mJy, 10 mJy, and 100 mJy, respectively, and the

dotted and dashed lines are the thermal noise levels �T
N expected for SKA1-LOW and

SKA2-LOW respectively, with �⌫ = 1 kHz and �t = 100 hr. The zoom-in plots in the upper

panels show the 21-cm optical depth with different scales in the y-axes.
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SKA1-Low

SKA2-Low

where Ae↵ is the effective collecting area of the telescope, Tsys is the system temperature, �⌫ is the

channel width, and �t is the integration time. The corresponding thermal noise temperature is:

�T
N = �S

N

✓
�
2

z

2kB⌦

◆
⇡

�
2

zTsys

Ae↵⌦
p
2�⌫�t

, (16)

where �z is the observed wavelength, and ⌦ = ⇡(✓/2)2 is the solid angle of the telescope beam,

in which ✓ = 1.22�z/D is the angular resolution with D being the longest baseline of the ra-

dio telescope/array. For the SKA1-LOW, we adopt Ae↵/Tsys = 800m2K�1 31, and Ae↵/Tsys =

4000m2K�1 is expected for SKA2-LOW2. For both arrays, we assume D = 65 km and �t = 100

hr, and �⌫ = 1 kHz is assumed in order to resolve individual 21-cm lines. Correspondingly, the

synthetic spectra shown in Figs. 1 and 2 are smoothed with the same channel width. At redshift z =

9, the angular resolution is about 8.17 arcsec, and the noise temperature is plotted with dotted and

dashed lines in the lower panels in Figs. 1 and 2, for SKA1-LOW and SKA2-LOW respectively.

1-D power spectrum of 21-cm forest. It is seen from Fig. 2 that the direct measurement of in-

dividual absorption lines is vulnerably hampered by the early X-ray heating. In order to improve

the sensitivity for detecting the 21-cm forest signal, and to reveal the clustering properties of the

absorption lines so as to distinguish the effects between heating and WDM models, we follow the

algorithm in Ref.18, and compute the 1-D power spectrum of the brightness temperature on hypo-

thetical spectra against high-redshift background sources. The brightness temperature �Tb(ŝ, ⌫) as

a function of observed frequency ⌫ can be equivalently expressed in terms of line-of-sight distance
2https://www.skao.int/en/science-users/118/ska-telescope-specifications

30

S150 = 1 mJy

S150 = 10 mJy

S150 = 100 mJy

100 hr, 1 kHz

800 m2 K−1

Aeff /Tsys = 

4000 m2 K−1

The mock 21-cm signals
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Figure 13. Upper panel: Spectrum of a source positioned at
z = 14 (i.e. ν ∼ 95 MHz), with an index of the power-law
α = 1.05 and a flux density Sin(zs) = 50 mJy. The lines are
the same as those in Figure 10. Here we have assumed the noise
σn given in eq. 3, a bandwidth ∆ν = 20 kHz, smoothing over
a scale s = 20 kHz, and an integration time tint = 1000 h. The
IGM absorption is calculated from the reference simulation L4.39.
Lower panel: σabs/σobs corresponding to the upper panel.

The most challenging aspect of the detection of a
21 cm forest remains the existence of high-z radio loud
sources. Although a QSO has been detected at z = 7.085
(Mortlock et al. 2011), the existence of even higher redshift
quasars is uncertain. The predicted number of radio sources
which can be used for 21 cm forest studies in the whole sky
per unit redshift at z = 10 varies in the range 10 − 104 de-
pending on the model adopted for the luminosity function
of such sources and the instrumental characteristics (e.g.
Carilli et al. 2002; Xu et al. 2009), making such a detection
an extremely challenging task. The possibility of using GRB
afterglows has been suggested by Ioka & Mészáros (2005),
concluding that it will be difficult to observe an absorption
line, even with the SKA, except for very energetic sources,
such as GRBs from the first stars. In fact, a similar calcula-
tion has been repeated more recently by Toma et al. (2010)
for massive metal-free stars, finding that the flux at the same
frequencies should typically be at least an order of magni-
tude higher than for a standard GRB.

An absorption feature stronger than the one produced
by the diffuse IGM, would be the one due to intervening star-
less minihalos or dwarf galaxies (i.e. Xu et al. 2011; Meiksin
2011), resulting in an easier detection. On the other hand
the optical depth would strongly depend on the feedback
effects acting on such objects. Because of the large uncer-
tainties about the nature and intensity of high-z feedback
effects (for a review see Ciardi & Ferrara 2005 and its ArXiv
updated version), it is not straightforward to estimate the
relative importance of these two absorption components un-

less a self-consistent calculation is performed. We defer this
investigation to a future paper.
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FIG. 11: Abundance of 21 cm absorption features per redshift
interval at z=10 for different values of TIGM as indicated in
the legend.

nal. Consequences for the halo dark matter profile of
massive neutrinos [60], RSI [61] and WDM [8, 62] have
been studied to some extent for galaxy- to cluster-scale
halos at low redshifts, indicating that they are affected
mainly in the central regions with r/rvir ! 0.1. Although
no corresponding work exists for high-redshift minihalos,
we may speculate that the impact is less than that due
to the mass function with regard to our results, for which
the outer regions of the halo are more relevant (Fig.2).
Nevertheless, this needs to be substantiated by future,
dedicated investigations. Third, we did not account for
neutral gas lying outside the virial radii of minihalos and
accreting onto them, which can provide a significant ad-
ditional contribution to the absorption feature [16, 20].
Albeit challenging to model accurately, such components
should be taken into account for more accurate predic-
tions in the future. Note also the possibility of further
absorption along the line of sight due to the incompletely
virialized cosmic web and/or the global IGM that is ex-
pected to be much weaker [17, 18, 22, 23], and that due
to the disks of larger galaxies that should be individually
stronger but much rarer [16]. Finally, the implications
of relative streaming velocity between baryons and dark

matter [63] may also be interesting for future studies of
the 21 cm forest.

To conclude, we have presented a novel approach to
probe small-scale cosmological fluctuations utilizing the
21 cm forest, that is, absorption features caused by HI
gas in minihalos in the spectrum of background radio
sources at redshifts at z ∼ 10 and above. The method
is potentially sensitive to scales k " 10 Mpc−1, much
smaller than can be currently studied via observations
of the CMB, galaxy clustering or the Lyα forest. New
insight can be expected into aspects of physics beyond
the standard ΛCDM cosmological model such as mas-
sive neutrinos, running of the primordial spectral index
and warm dark matter. Radio quasars or Population III
gamma-ray bursts are potential candidates for the back-
ground radio sources with the requisite brightness and
number at the appropriate redshifts for future observa-
tions with SKA.

Further potentially interesting cosmological applica-
tions of the 21 cm forest include probes of primor-
dial non-Gaussianity in relation to either the nonlinear,
scale-dependent bias [64] or the halo mass function [65],
and probes of isocurvature primordial perturbations (e.g
[66]). We note that several recent papers have discussed
the possibility of studying various aspects of the SSPS via
the 21 cm emission signal [67], although efficient removal
of the far brighter foreground emission poses a major ob-
servational challenge for realizing such prospects [29].
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other interpretations are possible and these observations
cannot yet be taken as definitive evidence of WDM or
measurement of its mass.

IV. DISCUSSION AND SUMMARY

We now turn to a discussion of the observability of the
21 cm forest due to minihalos. The principal question
is the existence of background radio sources with suffi-
cient brightness and number at the relevant frequency
and redshifts of z ∼ 10 − 20. The low temperatures
of minihalos imply that the width of the expected ab-
sorption features are narrow, necessitating spectroscopy
with frequency resolution of order ∆ν ∼ kHz at observer
frequencies νobs ∼ 70-130 MHz. Following and updat-
ing [16], in order to detect absorption features of optical
depth τ with frequency resolution ∆ν and signal-to-noise
S/N with an integration time tint, the required minimum
background source brightness is
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FIG. 10: Abundance of 21 cm absorption features per redshift
interval at z = 10 (top) and z = 20 (bottom) for WDM with
various particle masses as indicated in the legend.
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where the specifications anticipated for SKA2-low are
adopted for the effective collecting area Aeff and system
temperature Tsys [50, 51].
Our results in Section III at face value show that spec-

troscopy of a single source with such properties at z ∼ 10
may reveal tens to hundreds of absorption features with
τ ∼ 0.01 − 0.1, which could already provide important
information on the SSPS. Multiple sources would still be
desirable to characterize fluctuations along different lines
of sight. On the other hand, at z ∼ 10, our neglect of
astrophysical effects such as the UV background or reion-
ization and heating of the IGM is hardly justifiable. As
mentioned below, in reality, such effects may completely
dominate over any of the SSPS-related effects discussed
above, which were quite small already at z = 10 except
for the case of WDM.
In this regard, z ∼ 20 or higher would be much more

preferable, since the formation of stars and galaxies and
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Figure 9. Gaussian fit (blue curve) to histogram of normalized flux densities
from the fX = 0.1 spectrum for the (a) unabsorbed and (b) absorbed region
of the spectrum with no absorption lines added, as well as the (c) absorbed
region with 100 lines added. The thin dotted line indicates the position of
0 mJy (no offset) on the x-axis. The mean and standard deviation of both
the spectrum points (‘data’) and Gaussian fit are included on the plots, as
is the skewness of the spectrum points in each region. Note that in (c), the
x-axis range has been extended to reflect the fact that the histogram extends
to large negative values of the normalized flux, though the number of points
in each low-flux bin is too small to be seen in the plot.

Figure 10. Difference between the Gaussian mean in the absorbed region
and unabsorbed region of the spectrum (flux decrement) for fX = 1 (blue
squares) and fX = 0.1 (black diamonds), plotted against the number of ab-
sorption lines added to the spectrum. Error bars are derived from a bootstrap
resampling of each spectrum. In this figure and Figs 11 & 12, the light grey
symbols represent a scenario in which absorption lines are allowed to occur
ionized bubbles. They are slightly horizontally offset for clarity.

Fig. 10 shows that, in the idealized case in which foregrounds and
the source spectra are well understood, this method can very accu-
rately determine fX. The robustness of the flux decrement estimated
by the Gaussian fit – regardless of the number of lines included – is
striking. We see in the plot that even for fX = 1, the flux decrement
is easily distinguished from 0, suggesting a detection of 21 cm and
an estimate of fX is possible. Even if there are 500 lines added to
the absorption spectrum, the flux decrement can be translated into
a high precision estimate of τ via equation (14). For fX = 0.1,
the flux decrement is similarly stable and is detectable at a much
higher significance. The strong separation between the fX = 1 and
0.1 points in Fig. 10 further suggests that fX might potentially be
determinable to closer than an order of magnitude if the foregrounds
and spectra were well known.

Fig. 11 plots σR−σL where σR is the Gaussian-derived standard
deviation in the absorbed region and σL is the value in the unab-
sorbed region. It is clear from this figure that while the outlying
absorption feature points do not significantly move the Gaussian,
they do somewhat broaden it (though not significantly enough that
an fX = 1 spectrum with many lines would be mistaken for an
fX = 0.1 spectrum with few lines). This measurement should be
possible even in a realistic observation in which the foregrounds
and source spectrum had to be approximated with a running power
law and extrapolated from the unabsorbed region, as the relative
widths of the distributions should still be robust.

Fig. 12 presents the skewness of the simulation distribution as a
function of lines added. As can be seen in the plot, a large negative
skewness occurs when large numbers of absorption lines are present.
The skewness is not monotonic, however. This is due to the fact
that the presence of more absorption lines means there are fewer
channels that contribute to the roughly Gaussian part of the flux
distribution, and although the distribution is more heavily skewed
at the low-flux end, it also becomes broader and less Gaussian
overall. Since the standard deviation contributes inversely in the
definition of skewness, the magnitude of the skewness decreases as
the number of outliers grows very large.

C© 2012 The Authors, MNRAS 425, 2988–3001
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Detecting the 21 cm forest 2997

Figure 8. Difference in mean variance between unabsorbed and absorbed
regions as a function of integration time for a window size of 1 MHz, with
fX = 1 and no lines added (red symbols with error bars). Also included, for
reference, is the difference in mean variance for fX = 0.1 with a window
size of 1 MHz, for an integration time of 1 week (blue cross with error bars).
The inset highlights the points for 100 d, 6 months and 1 yr, to illustrate the
increased sensitivity to the variance increase with long integration times.

Fig. 8, we plot this difference as a function of integration time for a
window of size 1 MHz and fX = 1. For comparison, we also include
the difference for fX = 0.1 at an integration time of 1 week. This
plot shows that for small integration times, the variance method still
will not allow us to detect the forest against a Cygnus A-like source
for fX = 1. However, increasing the integration time can allow a
significant detection even for this case. (Compare with Fig. 4b.)
This suggests that even if fX is high and very radio-loud sources are
not available for high S/N in spectral measurements of the 21 cm
forest, a detection of absorption (and therefore a constraint on fX)
may be possible with extended observations.

7.2 Gaussian fitting

In spectra with numerous strong absorption lines, the signal variance
is dominated by the lines, making the statistical method described
in Section 7.1 above more difficult. In order to take the variance due
to lines into account, one would have to have a detailed model of
the way in which fX affects the number and character of absorption
lines. Since such models are still highly uncertain, we developed a
method to effectively remove the absorption lines from the spectrum
in order to better characterize the thermal properties of the mean
IGM.

Our method uses Gaussian fitting essentially as a filter to remove
highly non-Gaussian elements (i.e. narrow absorption lines), after
first source-subtracting the spectra as discussed in Section 7.1. For
a spectrum with no absorption lines added, this results in a ‘normal-
ized’ spectrum in which the unabsorbed region consists of Gaussian
noise with a mean of zero and the absorbed region contains both
Gaussian noise and a mildly non-Gaussian distribution of absorp-
tion and transmission regions with a mean below zero – this mean is
the flux decrement. We reiterate that this depends strongly on how
perfectly the source spectrum can be subtracted in practice.

Let F0(ν) be the flux density of the source as a function of
frequency. In a pixel at some frequency ν0, the observed flux is

F (ν0) = F0(ν0)T (ν0) ≈ F0(ν0)[1 − τ (ν0)], (12)

where T(ν) is the transmission fraction at frequency ν and τ (ν) #
1 is the corresponding optical depth. If we source-subtract the spec-
trum, we have

FN(ν0) = −F0(ν0)τ (ν0), (13)

where FN indicates the source-subtracted (normalized) flux. For the
unabsorbed region in which τ = 0 (i.e. redward of the redshifted
21 cm frequency), FN = 0 on average, the only variation being due
to instrumental noise, which we assume here to be Gaussian. We
denote the average flux of the unabsorbed region on the left-hand
side of the spectrum FL and the average flux of the absorbed region
on the right-hand side FR. For a small frequency range around the
21 cm transition, 〈FL〉 = 0 and

〈FR〉 = −〈F0,R〉〈τR〉. (14)

This defines the average flux decrement #FN of the absorption
region:

#FN = 〈FR〉. (15)

Note that we have chosen a convention in which the flux decrement
is a negative quantity – strictly the (negative) distance from FN = 0
rather than the (positive) distance below FN = 0.

If no lines are present in the spectrum, the mean normalized flux
in the absorbed region gives the flux decrement, which can be related
in a straightforward way to the optical depth and, consequently, fX.
However, if absorption lines are present in the spectrum, they can
distort the measured average flux decrement, making it difficult to
straightforwardly relate it to the mean τ in the IGM. Similarly, ab-
sorption lines dominate the signal variance. Gaussian fitting solves
this problem. Instead of calculating the mean or standard deviation
of the flux distribution itself, we make a histogram of the flux dis-
tribution of each region (absorbed and unabsorbed) and fit this to a
Gaussian. The mean and standard deviation of the Gaussian fit are
close to those that would be found if the lines were not included in
the spectrum, since the lines constitute non-Gaussian outliers that,
due to their narrowness and the large region of the spectrum consid-
ered, have little weight in the fitting calculation. In Fig. 9, we show
example histograms and Gaussian fits for the unabsorbed region of
the spectrum as well as the absorbed region with 0 and 100 lines
added. In each plot, we also include µGaussian and σ Gaussian, the mean
and standard deviation of the Gaussian fits, and µdata and σ data, the
mean and standard deviation of the simulated spectrum ‘data’. We
also include the skewness of the simulated spectrum points. The
non-Gaussian outliers have a strong influence on the skewness of
the distribution; in this case, a large (negative) skewness indicates
the presence of many absorption lines. In Fig. 9(c), the range
of the plot extends far to negative flux values to include the bins in
the histogram corresponding to the absorption lines. As is evident
in this plot, while the absorption lines extend to low fluxes, their
distribution is such that they cannot be seen by eye in the histogram
and they do not significantly affect the location of the Gaussian fit.

In Figs 10–12, we show the Gaussian fit-derived flux decrement,
the difference between the absorbed and unabsorbed fit-derived
standard deviation, and the simulation points’ skewness as a func-
tion of the number of lines added. In each plot, blue squares indicate
fX = 1, black diamonds indicate fX = 0.1 and a red line is included
at 0 for reference. Grey points correspond to an alternative algo-
rithm in which absorption lines are drawn from a wider optical
depth distribution and are not excluded from photoionized regions
(see Section 6). For Figs 10 and 11, we estimated the errors of the
Gaussian fit parameters using bootstrap resampling of the spectrum
points.

C© 2012 The Authors, MNRAS 425, 2988–3001
Monthly Notices of the Royal Astronomical Society C© 2012 RAS

 at N
ational A

stronom
ical O

bservatory on February 26, 2014
http://m

nras.oxfordjournals.org/
D

ow
nloaded from

 

Increasement in mean variance Mean difference in flux decrement

Mack & Wyithe, 2012

curve denotes when n n= = =g sS z S z, , 0 , 0CMB(ˆ ) ( ) in
Equation (9). The black dashed curve denotes the standard
deviation of the bias-free noise cross-power, PN, in Equation (25)
using d d= =t t2 10 hr0.5 and Nγ=1. Note that the motivation
for using Nγ=1 here is just to compare 1D power spectra to
direct detection and that the advantages of using multiple

sightlines (Nγ>1) will be discussed later. The dotted and solid
lines (green, orange, and red) show when nsS ,obs(ˆ ) (with the
continuum spectrum from the compact background source
included) and the differential flux density, nD sS ,obs(ˆ ), are used
to obtain the power spectrum, respectively, as detailed in
Section 4.2.1. It shows, for reference, the Fourier modes

Figure 8. The expected value of the 1D line-of-sight power spectra of the differential flux densities in Figure 7 obtained by marginalizing Equation (16) over ŝ in the
three redshifted spectral subbands corresponding to z=8 (left), z=9.5 (middle), and z=11 (right). The black dashed line is the standard deviation of thermal
uncertainty in the cross-power spectrum, PN, obtained from Equation (25) corresponding to an integration time d d= =t t2 10 hr0.5 along the sightline to a single
source of compact background radiation (Nγ=1). The solid lines in green (S150=1 mJy), orange (S150=10 mJy), and red (S150=100 mJy) correspond to when the
continuum spectrum of the foreground and background radiation has been subtracted, while the dotted lines denote the corresponding 1D power spectra without such a
continuum subtraction. The latter is shown to demonstrate the typical kP modes that are contaminated when the continuum from foreground and background sources of
radiation is not subtracted properly. For comparison, the 1D power spectra from fluctuations (absorption) against compact background radiation sources are stronger
than those against the CMB (gray) by at least a few orders of magnitude. Consistent with Figure 7, the 1D power spectra become stronger with increasing redshift.
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Sensitivity challenge à statistical observables

l statistical observables to enhance the sensitivity of measurements with a reasonable observation time



Figure 3 | The expected 1-D power spectrum of 21-cm forest at z = 9 from a total

of 100 measurements on segments of 10 comoving Mpc length in neutral patches

along lines of sight against 10 background sources with S150 = 10 mJy. The left

panel shows the 1-D power spectra in the CDM model, and the blue, green, yellow and

red curves correspond to fX = 0, 0.1, 1 and 3, respectively. The right panel shows the 1-D

power spectra for an un-heated IGM (fX = 0), and the blue, green, yellow and red curves

correspond to the CDM model and the WDM models with mWDM = 10 keV, 6 keV, and 3

keV, respectively. The black dotted and dashed lines in each panel are the thermal noises

P
N expected for SKA1-LOW and SKA2-LOW respectively, with �t = 100 hr, and the error

bars show the total measurement errors of SKA2-LOW.
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The 1-D power spectrum along the line of sight is defined as:

P
�
ŝ, kk

�
=

���� eT 0 �ŝ, kk
����

2
✓

1

�rz

◆
. (18)

The term 1/�rz is the normalization factor, in which �rz is the length of sightline under consid-

eration. To reveal the small-scale structures we are interested in, we select neutral patches with

�rz = 10 comoving Mpc, and compute the 1-D power spectra from segments of 10 comoving

Mpc along the line of sight. For a reasonable number of O(10) high-z background sources, the

expected value of the power spectrum is obtained by averaging over 100 neutral patches on lines

of sight penetrating various environments3, i.e. P
�
kk
�
⌘

⌦
P
�
ŝ, kk

�↵
. For the rest of the paper,

we abbreviate kk as k, as here we are always interest in the k-modes along the line of sight.

Extended Data Fig. 10 shows the evolution of the 1-D power spectrum with redshift. The

solid lines in the left and middle panels show the power spectra in the CDM model and in the WDM

model with mWDM = 3 keV respectively, in the absence of X-rays. As the redshift increases, the

halo abundance decreases, and the small-scale fluctuations in the forest signal decrease, resulting

in steeper power spectra. The small-scale power is slightly more significantly suppressed in the
3On each quasar spectrum, we will be able to select ⇠ 10 segments of 10 comoving Mpc length in neutral patches;

as the neutral patches are intermittently separated by ionized regions during the EoR, we may need a spectrum covering

⇠ 200 comoving Mpc along the line of sight. A length of 200 comoving Mpc projects to a total bandwidth of about

14 MHz at redshift 9, corresponding to �z ⇠ 0.8, which is reasonable in practice.
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~ 10 sources with S150 = 10 mJy at z = 9

tint = 2 * 50 hr

Shao Y., XuYD, et al. 2023 NA

Degeneracy challenge à 1-D cross-power spectrum

• Cross-correlate two measurements to suppress the noise



Figure 4 | The expected 1-D power spectrum of 21-cm forest at z = 9 for different

heating histories (upper panels) and different DM models (lower panels), assuming

a total of 100 measurements on segments of 10 comoving Mpc length in neutral

patches along lines of sight against 10 background sources. The upper panels show

the power spectra in the CDM model assuming fX = 0, 0.1, 1, and 3, from left to right

respectively. The lower panels show the power spectra for the CDM model and the WDM

models with mWDM = 10 keV, 6 keV, and 3 keV, from left to right respectively, assuming an

un-heated IGM (fX = 0). In each row, the green, yellow and red curves correspond to the

flux densities of the background point sources with S150 = 1 mJy, 10 mJy and 100 mJy,

respectively. The black dotted and dashed lines are the thermal noises P
N for SKA1-

LOW and SKA2-LOW respectively, with �t = 100 hr, and the error bars show the total

measurement errors of SKA2-LOW.
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1-D cross-power spectrum



u Scientifically:

1. DM particle mass

2. Cosmic thermal history

Amplitude 

Slope 

1-D cross-power spectrum è Two birds with one stone

u Technologically:
1. Increase the sensitivity à

feasible
2. Breaking the degeneracy 

à simultaneous 
constraints



u FOR	SKA1-LOW	(800	M^2/K	):

!"!"# = #. % &'( )*+ !#$%# = ,. - .
u For	SKA2-Low	(4000	m^2/K	):

!"!"# = /. 0 &'( )*+ !#$%# = 1. / .

u For	SKA2-Low:

!"!"# = 2. 0 &'( )*+ !#$%# = 1,3 .

Using ~ 10 sources with S150 = 10 mJy at z = 9

Figure 6 | Constraints (68.3% and 95.4% confidence level) on TK and mWDM with

the 1-D power spectrum of 21-cm forest at z = 9, assuming a total of 100 measure-

ments on segments of 10 comoving Mpc length in neutral patches along lines of

sight against 10 background sources with S150 = 10 mJy. The gray and blue contours

correspond to results for SKA1-LOW and SKA2-LOW, respectively, including the sample

variance and the thermal noise with observation of 100 hr on each source. The fiducial

model of the left panel is mWDM = 6 keV and TK = 60 K (corresponding to fX = 0.1), and

the fiducial model of the right panel is mWDM = 6 keV and TK = 600 K (corresponding to

fX = 1).
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Figure 6 | Constraints (68.3% and 95.4% confidence level) on TK and mWDM with

the 1-D power spectrum of 21-cm forest at z = 9, assuming a total of 100 measure-

ments on segments of 10 comoving Mpc length in neutral patches along lines of

sight against 10 background sources with S150 = 10 mJy. The gray and blue contours

correspond to results for SKA1-LOW and SKA2-LOW, respectively, including the sample

variance and the thermal noise with observation of 100 hr on each source. The fiducial

model of the left panel is mWDM = 6 keV and TK = 60 K (corresponding to fX = 0.1), and

the fiducial model of the right panel is mWDM = 6 keV and TK = 600 K (corresponding to

fX = 1).
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21-cm forest: a simultaneous probe of DM & first galaxies

Shao, XuYD, et al. 2023 NA 
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Figure 6 | Constraints on mWDM and TK with the INF and Fisher matrix. The black

contour is based on the INF and the blue contour is based on the Fisher matrix. The left

panel presents the results when mWDM = 6 keV and TK = 60 K with an integration time of

100 h using SKA1-LOW. The right panel presents the results when mWDM = 6 keV and TK

= 600 K with an integration time of 200 h using SKA2-LOW. Contours represent 1� and

2� confidence intervals.
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Figure 2 | Network workflow chart (left panel) and schematic diagram of the archi-

tecture of the NF (right panel). Both the GNF and INF are composed of RQ-NSF (AR).

In the GNF, the conditions are parameters, and the output is a 1D power spectrum. Con-

versely, in the INF, the condition is a 1D power spectrum, and the outputs are parameters.

The network consists of a sequence of flows, each of which consists of a sequence of

autoregressive layers that share parameters. Input the condition and the sampling vector

obtained from the base distribution into the NFs to generate the output. The simulated

power spectra data set is divided into a training set, a validation set, and a test set. The

30

Sun et al. 2025 CP
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FIG. 7: Same with Fig.3 but including thermal noise.

despite X-ray heating acting uniformly across scales, the
scale-dependent impact of thermal noise results in an ap-
parent reduction of suppression at smaller scales and em-
phasizes the suppression at larger scales relative to CDM.

Thus, despite the presence of thermal noise, the
second-order WST coe�cients and their ratios to the
CDM baseline remain e↵ective in distinguishing between
scenarios. The di↵erences observed in the ratio maps

clearly reflect the distinct multi-scale correlation struc-
tures induced by free-streaming in the WDM model and
temperature homogenization in the X-ray heating model.
These results demonstrate that the second-order WST
coe�cients provide robust insights into the underlying
physical processes shaping the 21cm forest, even under
realistic observational conditions.

FIG. 8: Top: the ratio of second-order WST coe�cient be-
tween 3 keV mass of WDM case and CDM case. Bottom:
the ratio of second-order WST coe�cient between fX = 0.1
case and CDM case.

C. Fisher forecast

We next perform a Fisher forecast to estimate param-
eter constraints from the Wavelet Scattering Transform
applied to the 21cm forest brightness temperature spec-

9

FIG. 5: 21cm forest brightness temperature spectrum includ-
ing thermal noise in the CDM model for fX=0, 0.1, and 0.3,
and in WDM models with particle masses of 3 keV and 6 keV
for fX=0, respectively.

where the cross terms typically vanish if the noise and
signal are uncorrelated. Because the random thermal

noise coe�cients S
(1)

j (n) are nearly uniform across all
scales j, they contribute a roughly constant o↵set to the
overall first-order coe�cients.
The inherent robustness of the WST to thermal noise

arises from the localization of the wavelet transform in
frequency and the scattering procedure (see Appendix
B). Specifically, by taking the absolute value of the
wavelet coe�cients and then averaging, the process e↵ec-
tively smooths out the random fluctuations introduced by
the noise. However, because the small-scale features of
the 21cm forest signal—namely, the slight variations be-
tween absorption troughs and peaks—are relatively weak
(especially in models with enhanced X-ray heating that
smooth out these details), the addition of thermal noise
further masks these minor di↵erences, making it more
di�cult to distinguish between models compared to the
noiseless case. Nevertheless, when sample variance is
taken into account, the WST coe�cients still keep su�-
cient discriminatory potential to di↵erentiate among the
models.
We next examine the second-order WST coe�cients

computed from the simulated 21cm forest brightness tem-
perature spectra, including thermal noise. Figure 7 shows
the second-order WST coe�cients S2(j1, j2) averaged
over 10 lines of sight for the CDM (top), WDM 3 keV
(middle), and strong X-ray heating (fX = 0.1; bottom)
models. When compared to the noise-free results shown
previously (Fig. 3), thermal noise tends to increase the
apparent amplitude of S2 in certain regions, especially
where the intrinsic 21cm signal is weaker. This occurs
due to the non-linear modulus operation of the WST,
which introduces a positive bias from the noise contribu-
tion, complicating the direct interpretation of absolute
values.
To better understand how physical processes such as

free-streaming and X-ray heating influence the multi-
scale correlations in the presence of thermal noise, we

FIG. 6: Same with Fig.2. But, these first-order WST coe�-
cients are calculated from 21cm forest brightness temperature
with thermal noise.

also present the ratios of the second-order WST coe�-
cients relative to the CDM baseline in Fig. 8, defined as
equation (6).
Across most of the (j1, j2) plane, these ratios remain

clearly below unity for both the WDM and fX = 0.1
models. For the WDM scenario, in the noise-free case
(Fig. 4), the WDM scenario exhibits substantial sup-
pression at smaller scales (j1, j2 . 3), reflecting the
free-streaming e↵ect. However, once thermal noise is
included, this small-scale suppression appears less pro-
nounced, and the ratio in small-scale regions moves closer
to unity (ranging from about 0.39 to 0.93, top panel
of Fig. 8). This apparent reduction in suppression at
smaller scales occurs because thermal noise dispropor-
tionately increases the amplitude of the originally weaker
small-scale signals in the WDM scenario, thereby artifi-
cially elevating the S2 values. Conversely, at larger scales
(j1, j2 & 3), the noise e↵ect is relatively uniform, pre-
serving the stronger intrinsic suppression observed in the
WDM model relative to CDM. For the fX = 0.1 sce-
nario, the intrinsic e↵ect of strong X-ray heating is to
uniformly suppress brightness temperature fluctuations
across all scales, resulting in a homogenized IGM temper-
ature distribution. In the noise-free case (bottom panel
of Fig. 4), this suppression is particularly pronounced
at large scales, causing the second-order WST coe�-
cients—and thus the ratios relative to CDM—to be es-
pecially small in these regions. However, when thermal
noise is introduced, the small-scale regions experience a
relatively larger apparent increase in amplitude due to
the non-linear modulus operation within the WST anal-
ysis. As a consequence, the ratios at smaller scales shift
closer to unity, making the suppression appear weaker
compared to the noise-free scenario. Meanwhile, at larger
scales, where the intrinsic signal is even weaker, thermal
noise has a relatively smaller e↵ect on the ratio, pre-
serving the strong suppression originally observed. Thus,

Shimabukuro et al. 2025 submitted

u Wavelet Scattering Transform:
Non-Gaussian information

Suppressing noise

Other statistical measurement & inference tools

u Deep learning-driven inference:

Non-Gaussian information



u Radio afterglows of high-z GRBs 

u GRB090423 at z = 8.1 (Salvaterra+2009)

u GRB090429B at z = 9.4 (Cucchiara+2011) 

è The expected detection rate of luminous GRBs from 
Population III stars is 3 – 20 yr−1 at z > 8 
(Kinugawa+2019)

L. Ighina, et al. 2025, arxiv: 2504.10573

24 new high-z radio Quasars
from the radio Rapid ASKAP Continuum 

Survey (RACS)

High-redshift radio sources?? Yes!

u High-z radio-loud quasars
~ 317 quasars discovered at redshi< z≥6 (>496 at z >5.7)

(hGp://www.sarahbosman.co.uk/list_of_all_quasars)

~ 15 radio-loud quasars at z > 6 
(hGps://tomassolQnsky.github.io//eor/)

è A few hundred radio quasars with > 8 mJy at z ∼ 6 are 
expected (Gloudemans+2021)
è ∼ 2000 sources with > 6 mJy at 8 < z < 12 
(Haiman+2004) 

https://tomassoltinsky.github.io/eor/


2. Follow up resolving 21-cm lines :
spec. resolution:         5       kHz
integration time： 100       hr

1. Continuum Detection Survey :
spec. resolution:        10       MHz
survey area： 10313     deg!
total time： 365 × 6      hr

Niu Q., et al. 2025, ApJ, 978, 145

~ 20 sources @ z ~ 9 for SKA1-Low

Abundance of high-z radio-loud quasars



Preparing for 21-cm forest obs. with the SKA-Low

Ø Why SKA-Low? Bands & sensitivity! 

Ø Searching for high-z radio-loud quasars

Ø Require coordination with Euclid or 

Roman

Ø Band: 50 - 200MHz

Ø Freq. resolution: 1kHz/5kHz/10kHz

Ø Obs. mode: deep tracking (multi-beam)

Ø ~ 100 hr per source 



u Physics with 21-cm forest:

1. TIGM & xHI à Cosmic heating & reionization history à the first galaxies

2. Small-scale structure  à fundamental physics (DM, neutrino, B-DM velocity, …)

üComplementary to global spectrum & 21-cm tomography

u Challenges & strategies
1. Theoretical challenge à hybrid modeling & simulation

2. Observational challenges – statistical measurement (1-D power spectrum, WST, …)
ü Make the probe actually feasible by increasing sensitivity

ü Constrain simultaneously DM & thermal history as it breaks the degeneracy

The 21-cm forest: a simultaneous probe of DM & first galaxies

u Preparing for the SKA-Low



Modeling the various structures during the CD/EoR

Global evolution

Large-scale structure

Small-scale structure

1. Global 21-cm spectrum

2. 21-cm tomography

3. 21-cm forest

Figure 1 | The synthetic spectra of optical depth (upper panels) and brightness

temperature (lower panels) for a neutral patch of 10 comoving Mpc along the line of

sight, for an un-heated IGM (fX = 0) at z = 9. In each row, the four columns correspond

to the CDM model, and the WDM models with mWDM = 10 keV, 6 keV, and 3 keV, from left

to right respectively. In the lower panels, the green, yellow, and red spectra correspond to

the background source flux densities of S150 = 1 mJy, 10 mJy, and 100 mJy, respectively.

The spectra have been smoothed with a channel width of 1 kHz, and the dotted and

dashed lines are the thermal noise levels �T
N expected for SKA1-LOW and SKA2-LOW

respectively, with an integration time of �t = 100 hr.
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Semi-numerical simulation

Analytical modeling

Fast interpretation

Observational constraints



Thanks! Questions?


