The Large-Scale Structure Measurements

The summer school for 21cm cosmology July 2nd - 15th, 2025 Xi'an, P. R. China

Yichao LI (李毅超) from Northeastern University

- A Brief Introduction to Large-Scale Structure
 - A pretty biased view from an observational astronomer
- Powerspectrum Estimation Basic
 - Definition of correlation function
 - Definition of power spectrum
 - Relation between correlation function and power spectrum
- Galaxy Survey
 - Galaxy sample
 - Selection function
 - Window function
 - Error estimation
 - Correction of Alias Effects
- HI Intensity Mapping Survey
 - Fisher Information Matrix
 - FFT
 - Cross-correlation
 - Delay power spectrum

四方上下日宇 古往今来日宙

$$G_{\mu\nu} = \frac{8\pi G}{c^4} T_{\mu\nu}$$

$$H^{2} = \left(\frac{\dot{a}}{a}\right)^{2} = \frac{8\pi G\rho}{3} + \frac{\Lambda c^{2}}{3} - \frac{kc^{2}}{a^{2}}$$

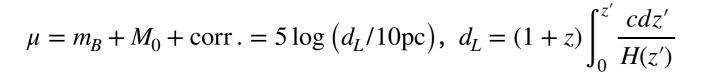
YOU ARE HERE

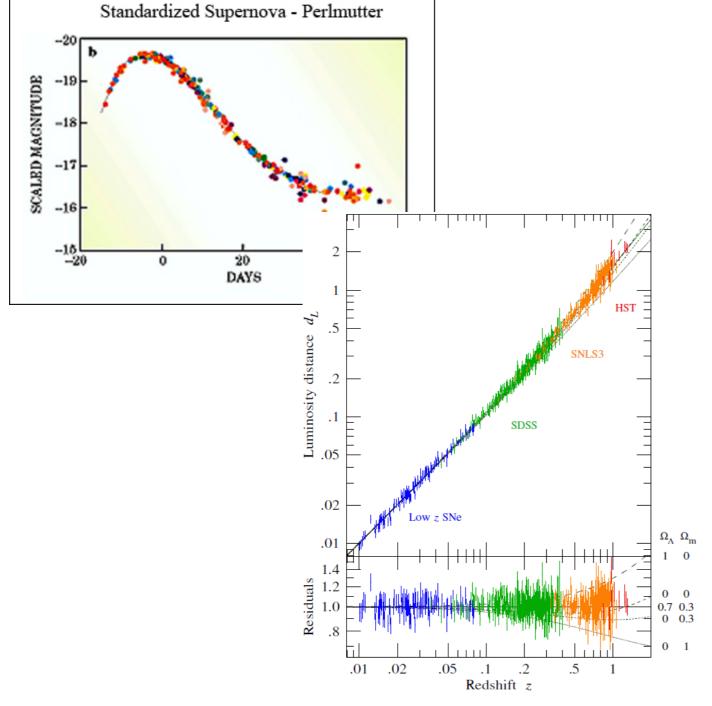
INFLATION

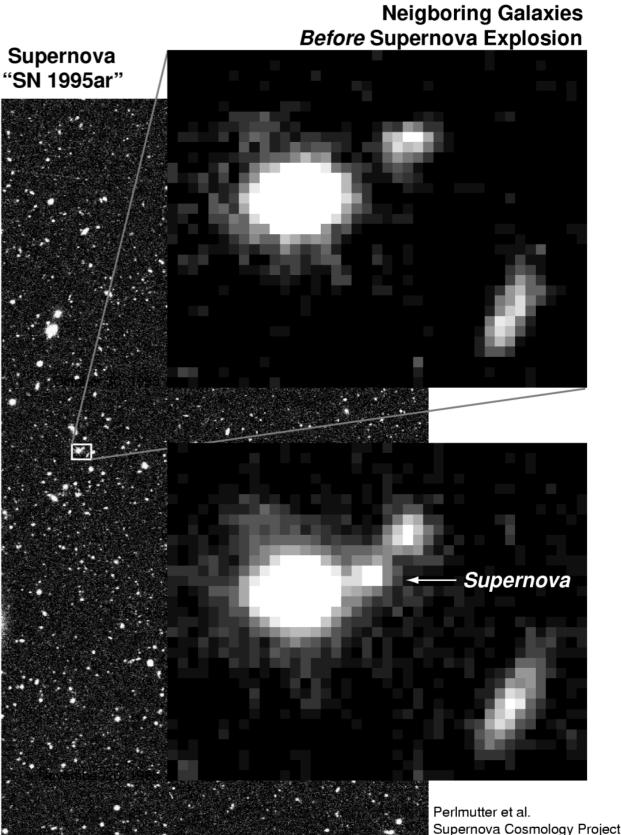
Within less than 10⁻³² of a second after the Big Bang, the universe ballooned outward, growing faster than the speed of light and pushing all the matter and energy in the cosmos apart in all directions.

BIG BANG

The universe burst forth violently from an extremely hot and dense point of concentrated energy some 13.8 billion years ago.

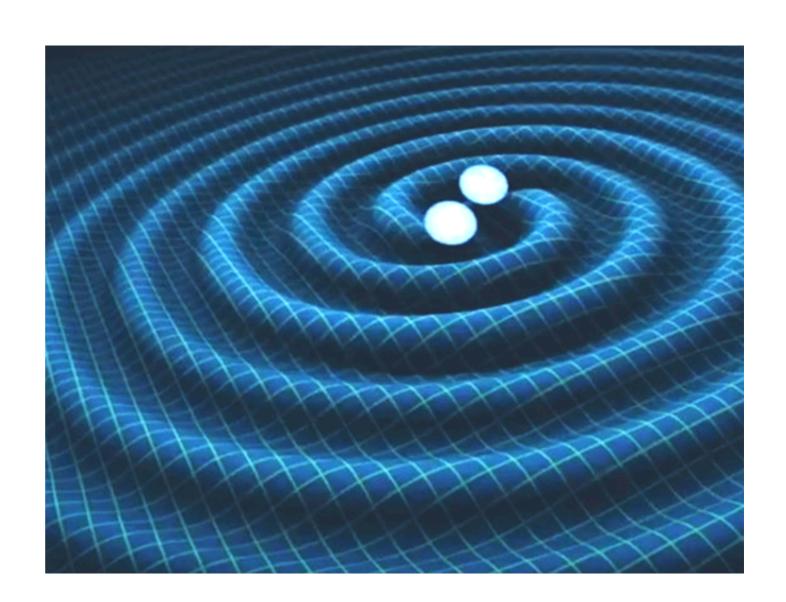






$$H^{2} = \left(\frac{\dot{a}}{a}\right)^{2} = \frac{8\pi G\rho}{3} + \frac{\Lambda c^{2}}{3} - \frac{kc^{2}}{a^{2}}$$

- The Standard Candle
- The Standard Sirens



$$H^{2} = \left(\frac{\dot{a}}{a}\right)^{2} = \frac{8\pi G\rho}{3} + \frac{\Lambda c^{2}}{3} - \frac{kc^{2}}{a^{2}}$$

- The Standard Candle
- The Standard Sirens
- The Standard Pings

快速射电暴:宇宙学中的"标准琶音"

原创 张骥国、张鑫 中国科学院国家天文台 2024年07月12日 08:01 北京

标准琶音 STANDARD PINGS

PRL **115**, 121301 (2015)

PHYSICAL REVIEW LETTERS

week ending 18 SEPTEMBER 2015

9

Dispersion Distance and the Matter Distribution of the Universe in Dispersion Space

Kiyoshi Wesley Masui

Department of Physics and Astronomy, University of British Columbia, Vancouver, British Columbia V6T 1Z1, Canada and Canadian Institute for Advanced Research, CIFAR Program in Cosmology and Gravity,

Toronto, Ontario M5G 1Z8, Canada

Kris Sigurdson

Department of Physics and Astronomy, University of British Columbia, Vancouver, British Columbia V6T 1Z1, Canada (Received 5 June 2015; revised manuscript received 3 August 2015; published 18 September 2015)

We propose that "standard pings," brief broadband radio impulses, can be used to study the three-dimensional clustering of matter in the Universe even in the absence of redshift information. The dispersion of radio waves as they travel through the intervening plasma can, like redshift, be used as a cosmological distance measure. Because of inhomogeneities in the electron density along the line of sight, dispersion is an imperfect proxy for radial distance and we show that this leads to calculable dispersion-space distortions in the apparent clustering of sources. Fast radio bursts (FRBs) are a new class of radio transients that are the prototypical standard ping and, due to their high observed dispersion, have been interpreted as originating at cosmological distances. The rate of fast radio bursts has been estimated to be several thousand over the whole sky per day and, if cosmological, the sources of these events should trace the large-scale structure of the Universe. We calculate the dispersion-space power spectra for a simple model where electrons and FRBs are biased tracers of the large-scale structure of the Universe, and we show that the clustering signal could be measured using as few as 10 000 events. Such a survey is in line with what may be achieved with upcoming wide-field radio telescopes.

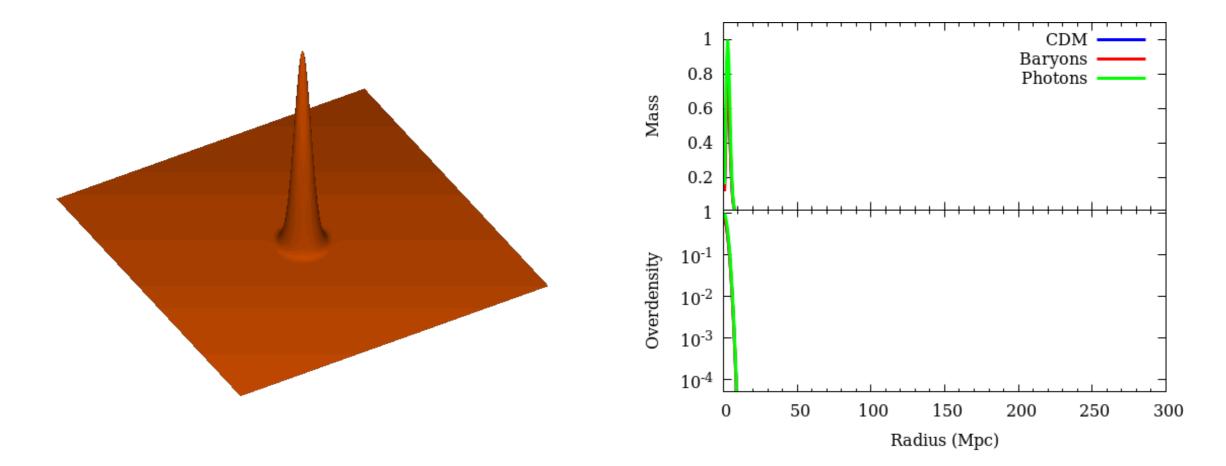
DOI: 10.1103/PhysRevLett.115.121301

PACS numbers: 98.62.Py, 95.75.Wx, 95.85.Bh, 98.62.Ra

$$H^{2} = \left(\frac{\dot{a}}{a}\right)^{2} = \frac{8\pi G\rho}{3} + \frac{\Lambda c^{2}}{3} - \frac{kc^{2}}{a^{2}}$$

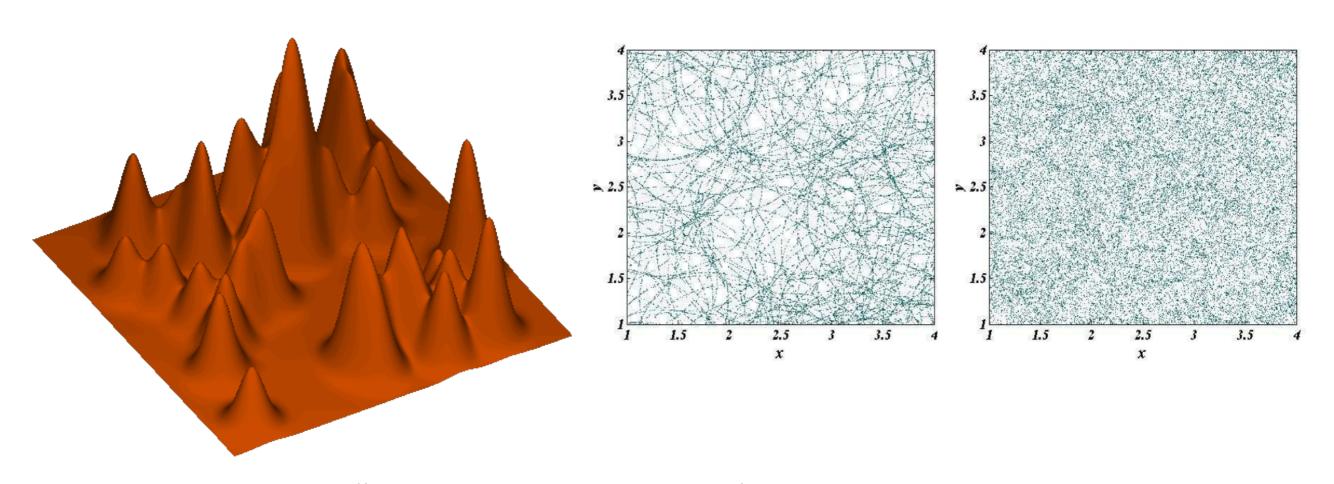
- The Standard Candle
- The Standard Sirens
- The Standard Pings
- The Standard Ruler
 - The Baryon Acoustic Oscillation (BAO)

The Baryon Acoustic Oscillation



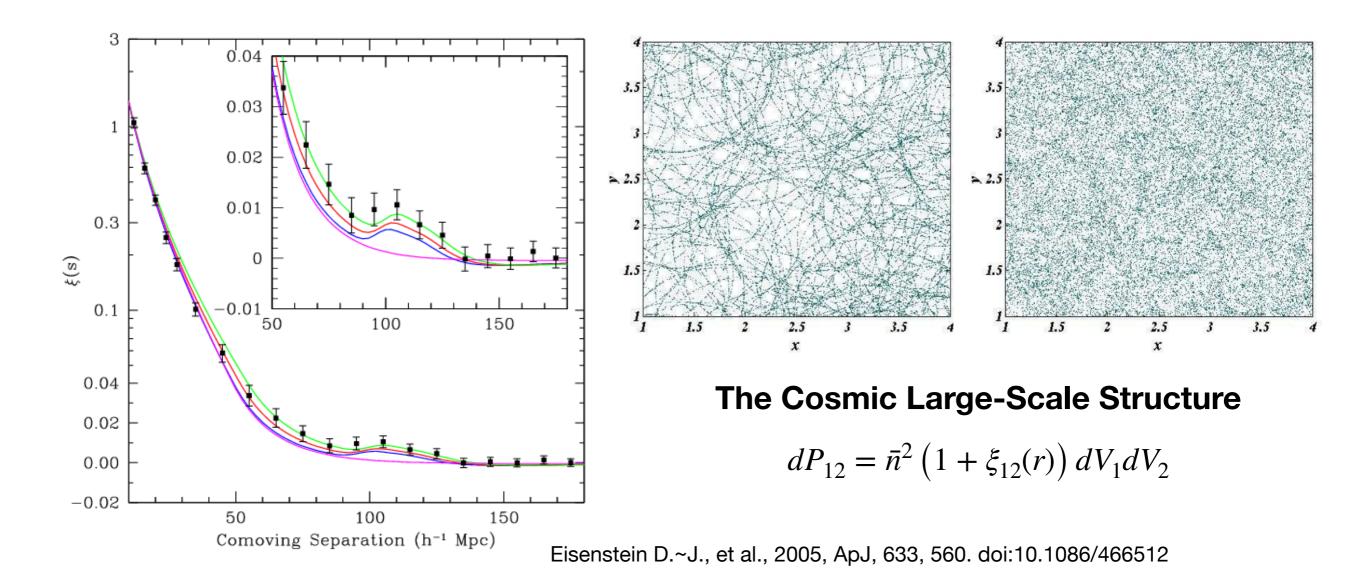
http://galaxies-cosmology-2015.wikidot.com/baryon-acoustic-oscillations

The Baryon Acoustic Oscillation



http://galaxies-cosmology-2015.wikidot.com/baryon-acoustic-oscillations

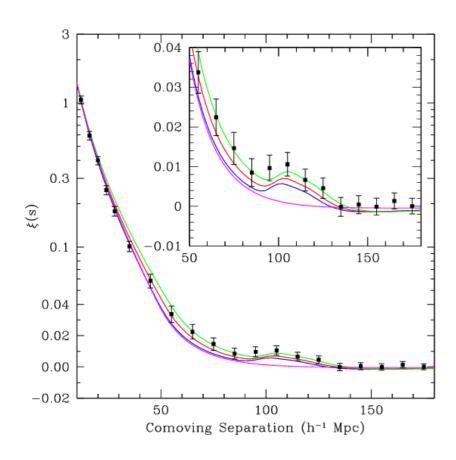
The Baryon Acoustic Oscillation



$$dP_{12} = \bar{n}^2 \left(1 + \xi_{12}(r) \right) dV_1 dV_2$$

The Two-point correlation function

$$\xi(r) = \langle \delta(x)\delta(x+r) \rangle$$

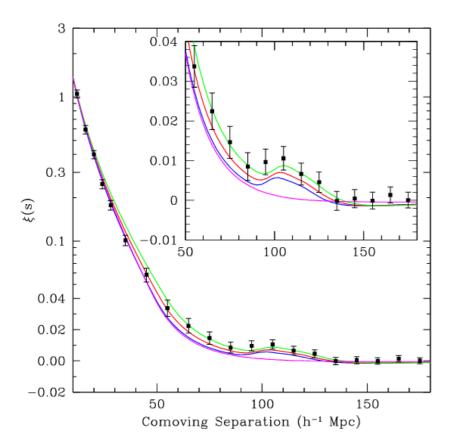


Eisenstein D.~J., et al., 2005, ApJ, 633, 560. doi:10.1086/466512

$$dP_{12} = \bar{n}^2 \left(1 + \xi_{12}(r) \right) dV_1 dV_2$$

The Two-point correlation function

$$\xi(r) = \langle \delta(x)\delta(x+r) \rangle$$



Eisenstein D.~J., et al., 2005, ApJ, 633, 560. doi:10.1086/466512

$$dP_{12} = \bar{n}^2 \left(1 + \xi_{12}(r) \right) dV_1 dV_2$$

The Two-point correlation function

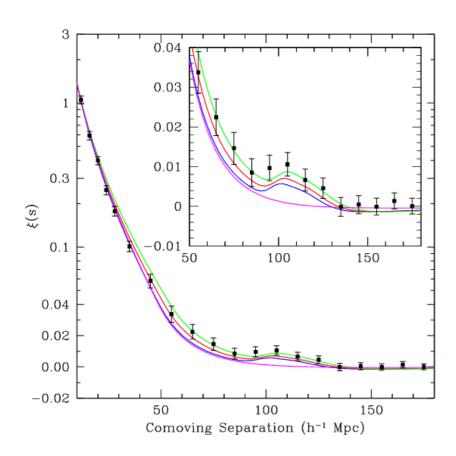
$$\xi(r) = \langle \delta(x)\delta(x+r) \rangle$$

Transfer to Fourier space

$$\delta(k) = \int \frac{d^3x}{(2\pi)^{3/2}} \delta(x) e^{-ik \cdot x}$$

$$\langle \delta(k)\delta(k')\rangle = 2\pi^2 P(k)\delta_D(k+k')$$

$$\xi(r) = \langle \delta(x)\delta(x+r)\rangle = \int \frac{dk}{k} P(k) \frac{\sin(kr)}{kr}$$



Eisenstein D.~J., et al., 2005, ApJ, 633, 560. doi:10.1086/466512

$$dP_{12} = \bar{n}^2 \left(1 + \xi_{12}(r) \right) dV_1 dV_2$$

The Two-point correlation function

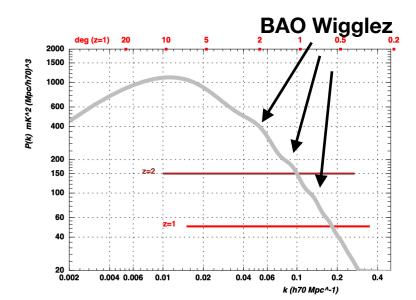
$$\xi(r) = \langle \delta(x)\delta(x+r) \rangle$$

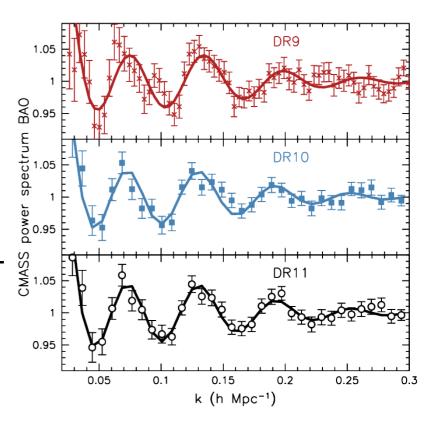
Transfer to Fourier space

$$\delta(k) = \int \frac{d^3x}{(2\pi)^{3/2}} \delta(x) e^{-ik \cdot x}$$

$$\left<\delta(k)\delta(k')\right> = 2\pi^2 P(k)\delta_D(k+k')$$

$$\xi(r) = \langle \delta(x)\delta(x+r)\rangle = \int \frac{dk}{k} P(k) \frac{\sin(kr)}{kr}$$





$$dP_{12} = \bar{n}^2 \left(1 + \xi_{12}(r) \right) dV_1 dV_2$$

The Two-point correlation function

$$\xi(r) = \langle \delta(x)\delta(x+r) \rangle$$
$$\langle \delta(k)\delta(k') \rangle = 2\pi^2 P(k)\delta_D(k+k')$$

Why is the 2-point function (either the correlation function or the power spectrum) the statistic of choice in characterizing LSS?

$$dP_{12} = \bar{n}^2 \left(1 + \xi_{12}(r) \right) dV_1 dV_2$$

The Two-point correlation function

$$\xi(r) = \langle \delta(x)\delta(x+r) \rangle$$
$$\langle \delta(k)\delta(k') \rangle = 2\pi^2 P(k)\delta_D(k+k')$$

Why is the 2-point function (either the correlation function or the power spectrum) the statistic of choice in characterizing LSS?

The correlation function or power spectrum is the (co)variance of density, which is the lowest order irreducible moment after the mean. The central limit theorem implies that a density distribution is asymptotically Gaussian in the limit where the density results from the average of many independent random processes. A Gaussian is completely characterized by its mean and variance.

$$dP_{12} = \bar{n}^2 \left(1 + \xi_{12}(r) \right) dV_1 dV_2$$

The Two-point correlation function

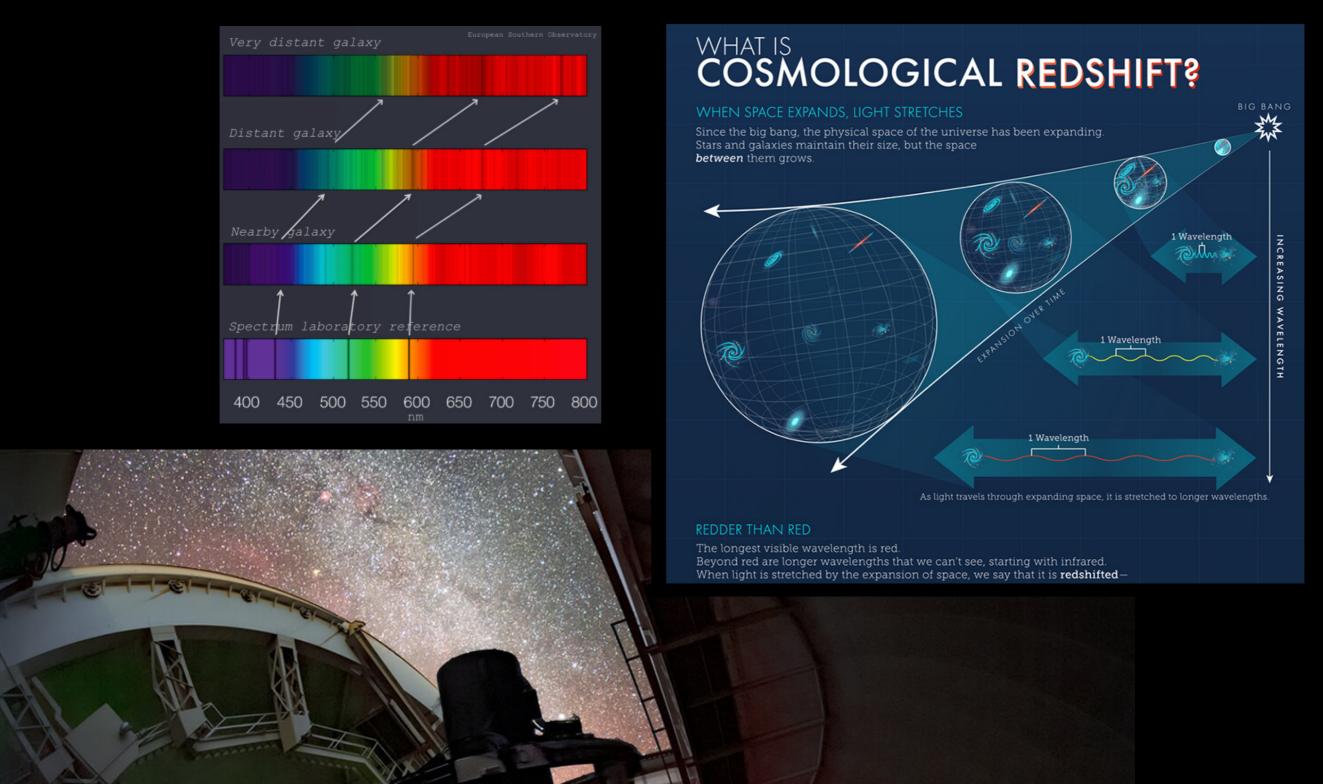
$$\xi(r) = \langle \delta(x)\delta(x+r) \rangle$$
$$\langle \delta(k)\delta(k') \rangle = 2\pi^2 P(k)\delta_D(k+k')$$

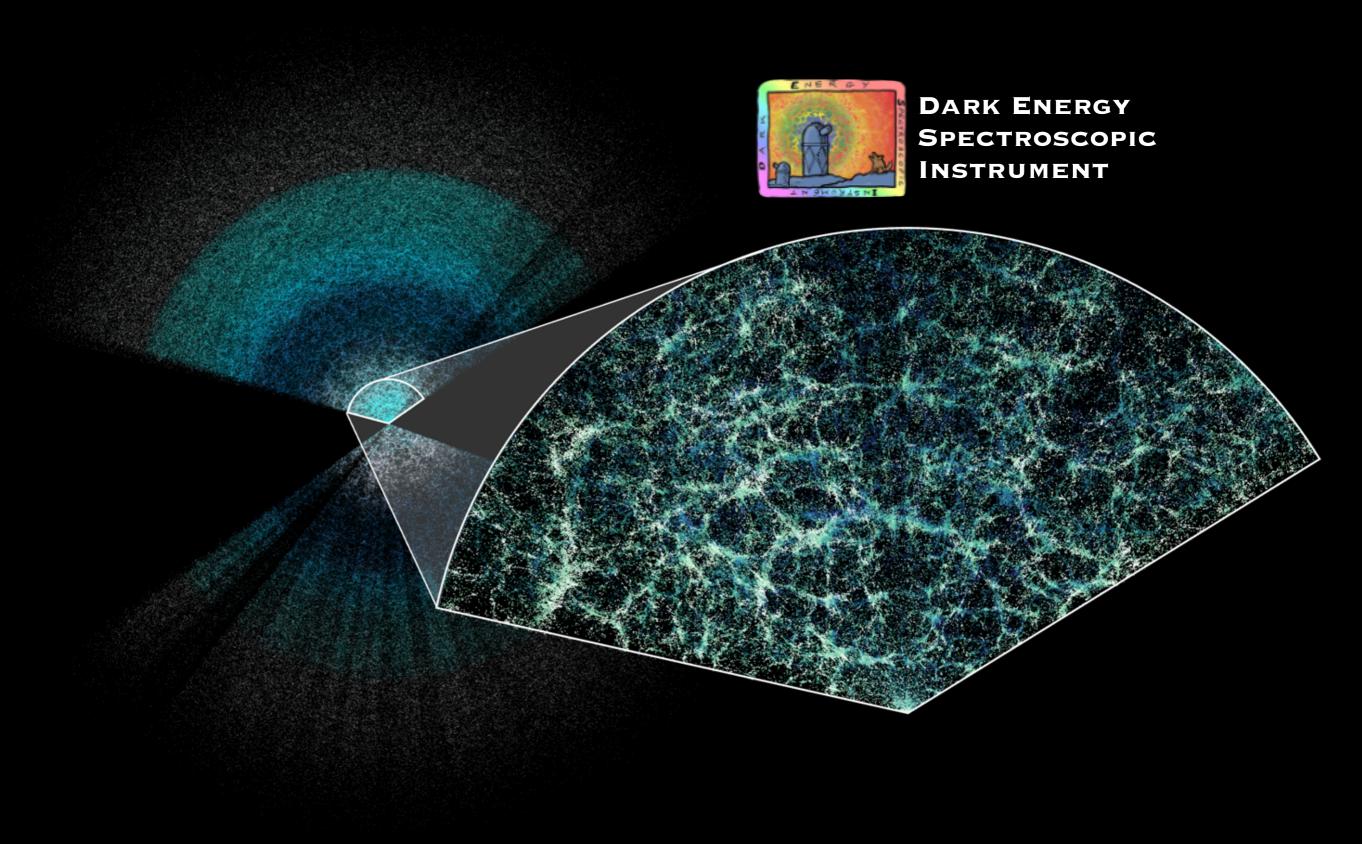
Why is the 2-point function (either the correlation function or the power spectrum) the statistic of choice in characterizing LSS?

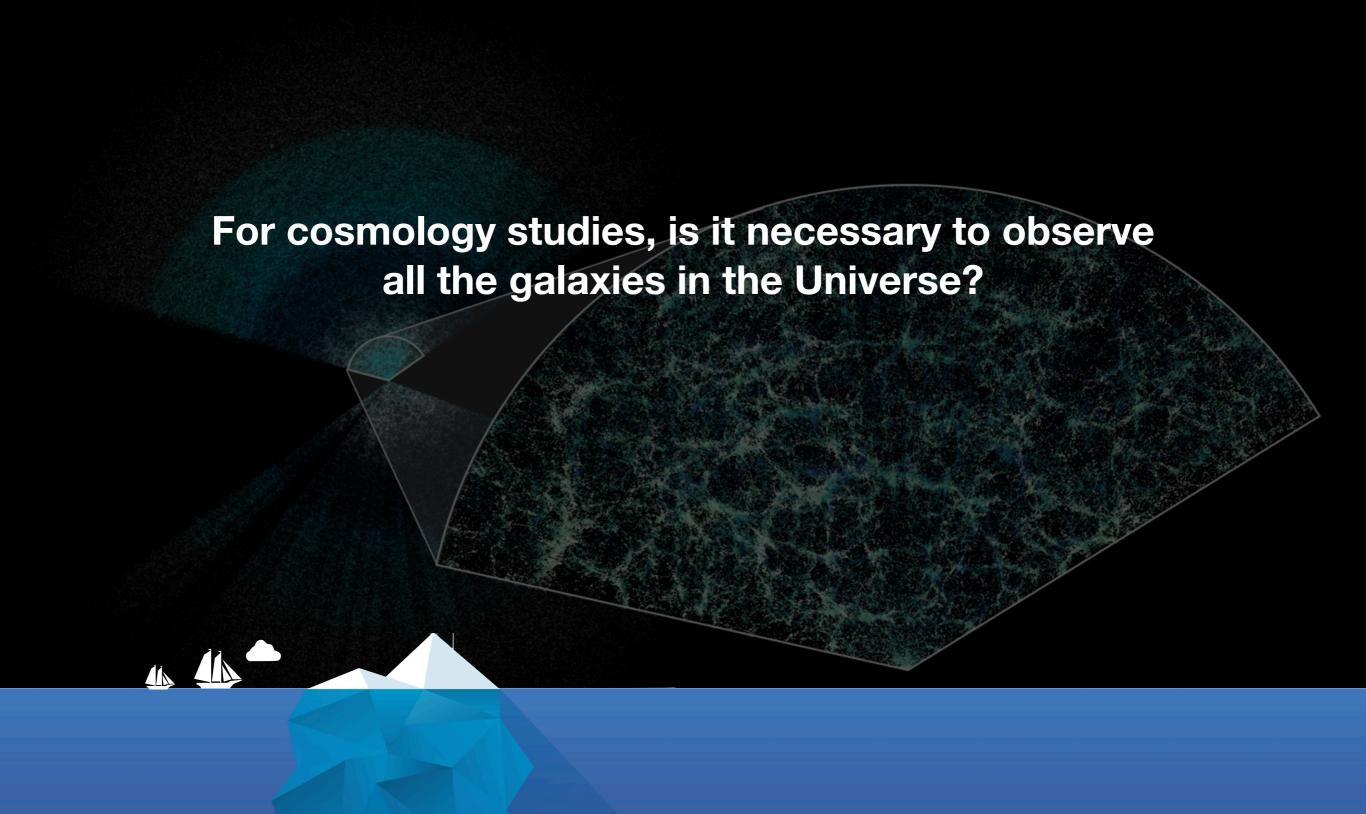
The correlation function or power spectrum is the (co)variance of density, which is the lowest order irreducible moment after the mean. The central limit theorem implies that a density distribution is asymptotically Gaussian in the limit where the density results from the average of many independent random processes. A Gaussian is completely characterized by its mean and variance.

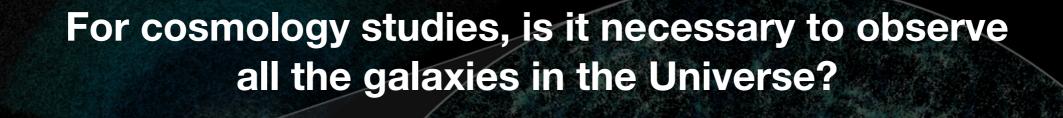
What is the advantage of the power spectrum over the correlation function?

LSS Galaxy Redshift Survey







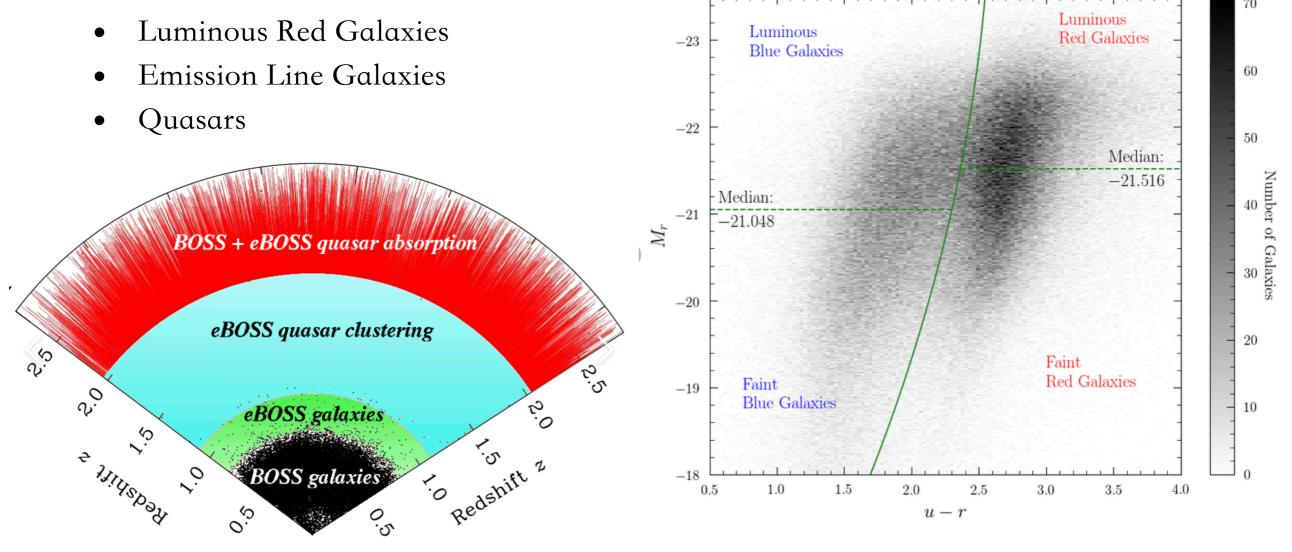


What kind of galaxies are ideal for cosmology?

The Galaxy Sample

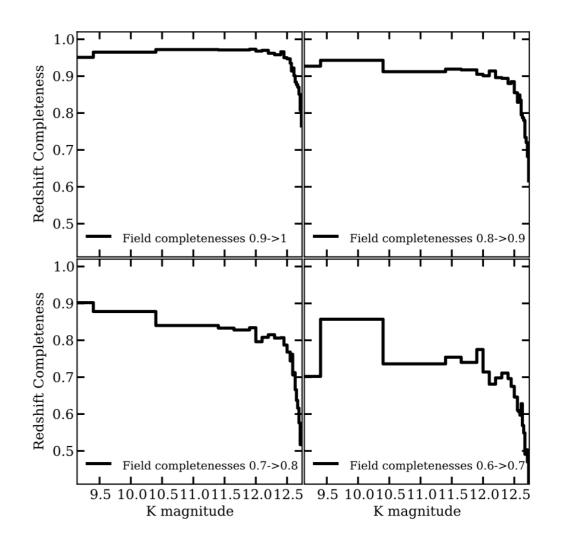
- Need to be a good sample of the underlying DM field
- Need to have enough number density
- Need to be distributed in large volumes

Need to be at a high redshift



- A galaxy survey samples only some fraction of the galaxies.
- Galaxies are selected randomly from some continuous underlying field.
- The Selection Function $\bar{n}(r)$

$$ar{n}(r) = ar{n}(z)\Phi(heta,m)$$



- A galaxy survey samples only some fraction of the galaxies.
- Aalaxies are selected randomly from some continuous underlying field.
- The Shot Noise

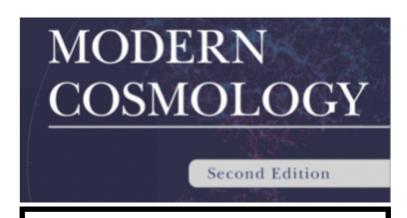
$$\begin{split} \xi(r) &= \left\langle \delta(x) \delta(x+r) \right\rangle \\ \left\langle \delta(r_i) \delta(r_j) \right\rangle_{\text{shot}} &= \frac{\delta_{\mathrm{D}}(r_{ij})}{\bar{n}(r_i)} \\ \left\langle \delta(k_i) \delta(k_j) \right\rangle_{\text{shot}} &= \frac{1}{\bar{n}} (k_i + k_j) \\ &\frac{1}{\bar{n}} (k) &= \left\{ \frac{1}{\bar{n}} (r) e^{ikr} d^3 r \right\} \end{split}$$

- With finite survey volume
- Cosmic Variance

$$\operatorname{Cov}_{\alpha\beta} \equiv \left\langle \hat{P}_{g}(k_{\alpha}) \hat{P}_{g}(k_{\beta}) \right\rangle - \left\langle \hat{P}_{g}(k_{\alpha}) \right\rangle \left\langle \hat{P}_{g}(k_{\beta}) \right\rangle \\
= \frac{1}{m_{k,\alpha}} \sum_{\mathbf{k}}^{||\mathbf{k}| - k_{\alpha}| < \Delta k/2} \frac{1}{m_{k,\beta}} \sum_{\mathbf{k}'}^{||\mathbf{k}'| - k_{\beta}| < \Delta k/2} \left[\left\langle |\delta_{g}(\mathbf{k})|^{2} |\delta_{g}(\mathbf{k}')|^{2} \right\rangle - \left\langle |\delta_{g}(\mathbf{k})|^{2} \right\rangle \left\langle |\delta_{g}(\mathbf{k}')|^{2} \right\rangle \right], \quad (4)$$

$$\begin{split} \left\langle |\delta_{\mathbf{g}}(\pmb{k})|^2 |\delta_{\mathbf{g}}(\pmb{k}')|^2 \right\rangle &= \left\langle \delta_{\mathbf{g}}(\pmb{k}) \delta_{\mathbf{g}}(-\pmb{k}) \delta_{\mathbf{g}}(\pmb{k}') \delta_{\mathbf{g}}(-\pmb{k}') \right\rangle \\ &= \left\langle \delta_{\mathbf{g}}(\pmb{k}) \delta_{\mathbf{g}}(-\pmb{k}) \right\rangle \left\langle \delta_{\mathbf{g}}(\pmb{k}') \delta_{\mathbf{g}}(-\pmb{k}') \right\rangle \\ &+ \left\langle \delta_{\mathbf{g}}(\pmb{k}) \delta_{\mathbf{g}}(\pmb{k}') \right\rangle \left\langle \delta_{\mathbf{g}}(-\pmb{k}) \delta_{\mathbf{g}}(-\pmb{k}') \right\rangle \\ &+ \left\langle \delta_{\mathbf{g}}(\pmb{k}) \delta_{\mathbf{g}}(-\pmb{k}') \right\rangle \left\langle \delta_{\mathbf{g}}(-\pmb{k}) \delta_{\mathbf{g}}(\pmb{k}') \right\rangle \\ &+ \left\langle \delta_{\mathbf{g}}(\pmb{k}) \delta_{\mathbf{g}}(-\pmb{k}') \right\rangle \left\langle \delta_{\mathbf{g}}(-\pmb{k}) \delta_{\mathbf{g}}(\pmb{k}') \right\rangle \\ &+ \left\langle \delta_{\mathbf{g}}(\pmb{k}) \delta_{\mathbf{g}}(-\pmb{k}) \delta_{\mathbf{g}}(\pmb{k}') \delta_{\mathbf{g}}(-\pmb{k}') \right\rangle_{\mathrm{conn}}. \end{split} \qquad \qquad \\ \left\langle \delta(\pmb{k}) \delta(\pmb{k}') \right\rangle = 2 \pi^2 P(\pmb{k}) \delta_D(\pmb{k} + \pmb{k}') + \frac{1}{\bar{n}} (\pmb{k} + \pmb{k}') \\ &+ \left\langle \delta_{\mathbf{g}}(\pmb{k}) \delta_{\mathbf{g}}(-\pmb{k}) \delta_{\mathbf{g}}(\pmb{k}') \delta_{\mathbf{g}}(-\pmb{k}') \right\rangle_{\mathrm{conn}}. \end{split}$$

$$\sqrt{\operatorname{Var}\left[\hat{P}_{g}(k_{\alpha})\right]} = \sqrt{\frac{2}{m_{k,\alpha}}} \left[P_{g}(k_{\alpha}) + P_{N}\right].$$



Scott Dodelson & Fabian Schmidt Modon Cosmology 2021 Chapter 14.4.2

Shot Noise

- With finite survey volume
- Weighted overdensity

$$\tilde{\delta}(r) = w(r)(n(r) - \bar{n}(r)) = w(r)\bar{n}(r)\delta(r) = W(r)\delta(r)$$

$$\tilde{\delta}(k) = \int W(r)\delta(r)e^{ikr}d^3r$$

$$\begin{split} \langle \tilde{\delta}(k)\tilde{\delta}(k')\rangle &= \int W(k_i-k)W(k_j+k)P(k)d^3k + N(k_i+k_j) \\ N(k) &= \int w^2(r)\bar{n}^2\frac{1}{\bar{n}(r)}e^{ikr}d^3r \end{split}$$

- With finite survey volume
- Weighted overdensity

$$\tilde{\delta}(r) = w(r)(n(r) - \bar{n}(r)) = w(r)\bar{n}(r)\delta(r) = W(r)\delta(r)$$

$$\tilde{\delta}(k) = \int W(r)\delta(r)e^{ikr}d^3r$$

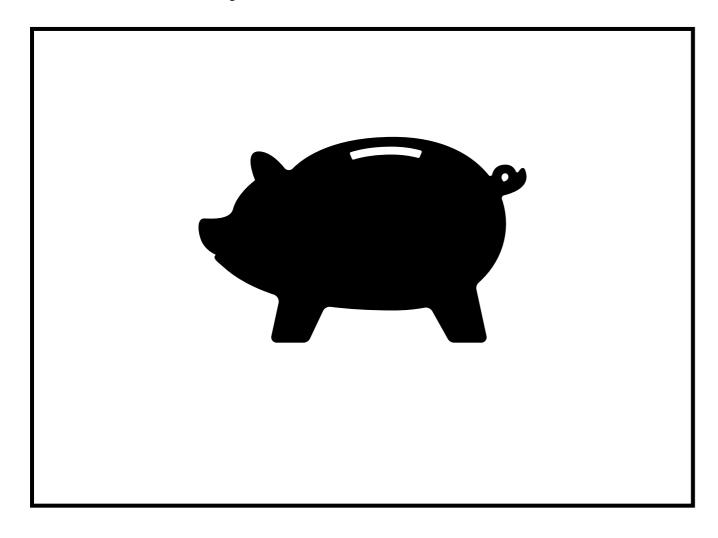
$$\langle \tilde{\delta}(k)\tilde{\delta}(k')\rangle = \int W(k_i - k)W(k_j + k)P(k)d^3k + N(k_i + k_j)$$

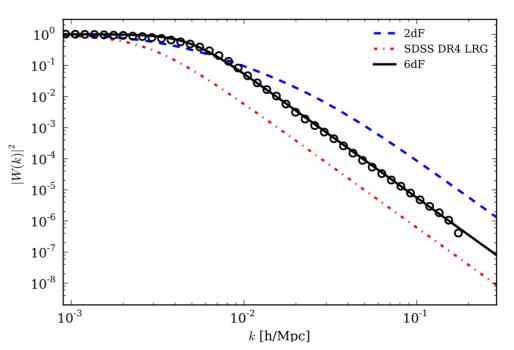
$$N(k) = \int w^2(r)\bar{n}^2 \frac{1}{\bar{n}(r)} e^{ikr} d^3r$$

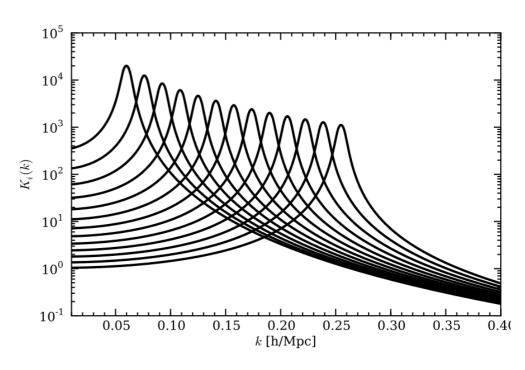
$$\langle \tilde{\delta}(k)\tilde{\delta}^*(k)\rangle = \int |W(k-k')|^2 P(k')d^3k' + N(0)$$

- With finite survey volume
- Weighted overdensity

$$\langle \tilde{\delta}(k)\tilde{\delta}^*(k)\rangle = \int |W(k-k')|^2 P(k')d^3k' + N(0)$$







- With finite survey volume
- Weighted overdensity

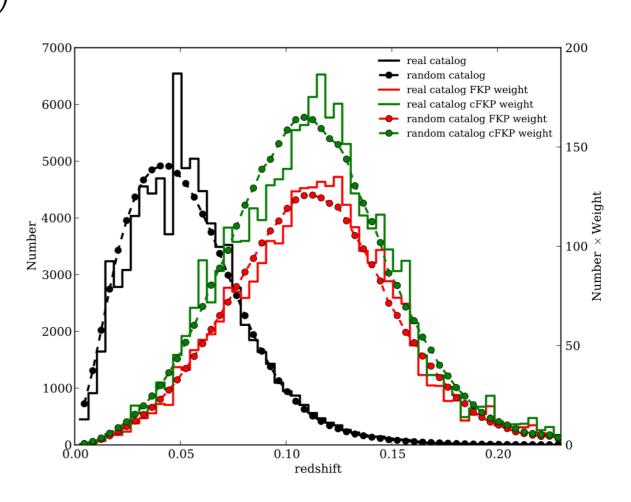
$$\langle \tilde{\delta}(k)\tilde{\delta}^*(k)\rangle = \int |W(k-k')|^2 P(k')d^3k' + N(0)$$

$$W(r) = \frac{1}{P(k) + 1/n(r)}$$

- With finite survey volume
- Weighted overdensity

$$\langle \tilde{\delta}(k)\tilde{\delta}^*(k)\rangle = \int |W(k-k')|^2 P(k')d^3k' + N(0)$$

$$W(r) = \frac{1}{P(k) + 1/n(r)}$$



- With finite survey volume
- Weighted overdensity

$$\langle \tilde{\delta}(k)\tilde{\delta}^*(k)\rangle = \int |W(k-k')|^2 P(k')d^3k' + N(0)$$

$$W(r) = \frac{1}{P(k) + 1/n(r)}$$

$$\int |W(k-k')|^2 P(k')d^3k' = \langle \tilde{\delta}(k)\tilde{\delta}^*(k)\rangle - N(0)$$

- With finite survey volume
- Weighted overdensity

$$\langle \tilde{\delta}(k)\tilde{\delta}^*(k)\rangle = \int |W(k-k')|^2 P(k')d^3k' + N(0)$$

• Inverse noise weight (FKP weight)

$$W(r) = \frac{1}{P(k) + 1/n(r)}$$

$$\int |W(k-k')|^2 P(k')d^3k' = \langle \tilde{\delta}(k)\tilde{\delta}^*(k)\rangle - N(0)$$

Estimation of Shot Noise

- With finite survey volume
- Weighted overdensity

$$\langle \tilde{\delta}(k)\tilde{\delta}^*(k)\rangle = \int |W(k-k')|^2 P(k')d^3k' + N(0)$$

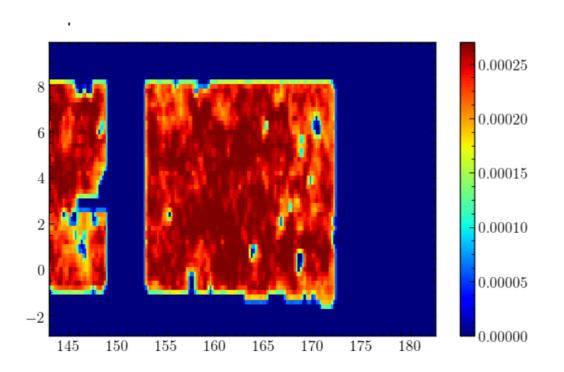
$$W(r) = \frac{1}{P(k) + 1/n(r)}$$

$$\int |W(k-k')|^2 P(k')d^3k' = \langle \tilde{\delta}(k)\tilde{\delta}^*(k)\rangle - N(0)$$

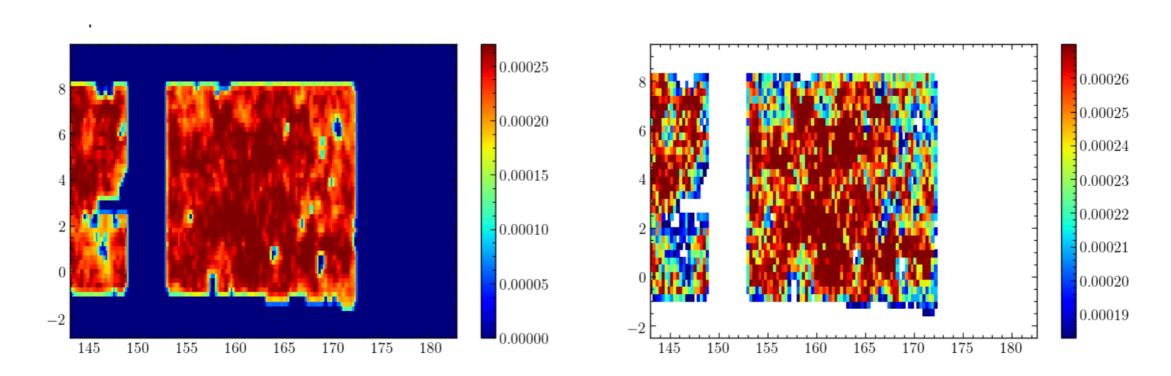
- Estimation of Shot Noise
 - Via Simulated Mock Samples

Shot Noise Estimation and Random Samples

- Estimation of Shot Noise
 - Via Simulated Random Samples
 - The random samples are supposed to have no LSS information
 - The random samples are supposed to have the same selection function $\bar{n}(r)$
- Generation of Random Samples
 - Using the known selection function $\bar{n}(r)$



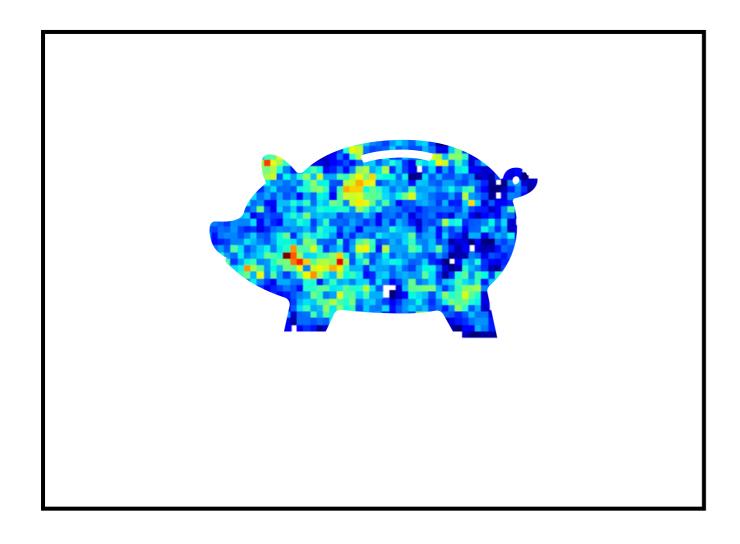
- Estimation of Shot Noise
 - Via Simulated Random Samples
 - The random samples are supposed to have no LSS information
 - The random samples are supposed to have the same selection function $\bar{n}(r)$
- Generation of Random Samples
 - Using the known selection function $\bar{n}(r)$
 - Using the real catalog and resampling
 - such as shuffle the position of the galaxies in the real catalog

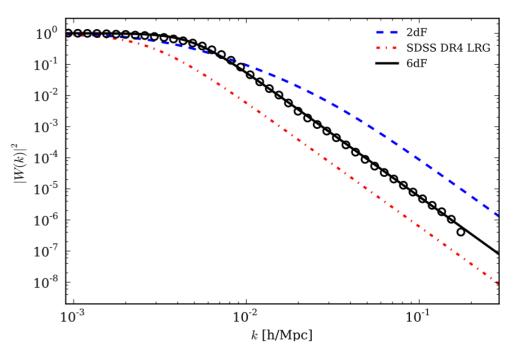


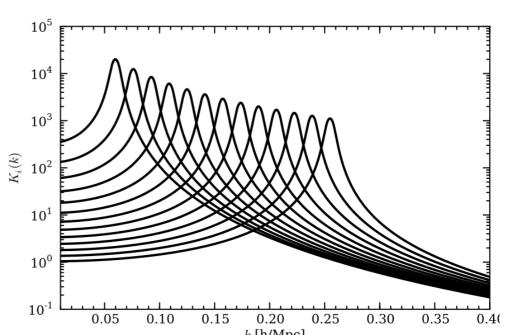
The Estimation of the Window Function

- Estimate the Window Function with Random Samples
 - Random Samples need to have a larger volume than real data

$$\int |W(k-k')|^2 P(k')d^3k' = \langle \tilde{\delta}(k)\tilde{\delta}^*(k)\rangle - N(0)$$







The Estimation of the Errors

- Estimate the Error
 - With Random Samples
 - With Simulation (N-body or Semi-analytical)
 - With Mock Samples.
 - Different from the Random Sample, the Mock Sample takes the LSS information.
 - Gaussian field

$$\tilde{\delta}(\mathbf{k}) = A(\mathbf{k}) + iB(\mathbf{k}),$$

$$\langle A(\mathbf{k})^2 \rangle = \langle B(\mathbf{k})^2 \rangle = \frac{1}{2} P(k),$$

$$\delta_G(\mathbf{x}) = \mathcal{F}^{-1}[\delta(\mathbf{k})],$$

Need to take care of the symmetry in the Fourier space to make sure a real number in the real (configureation) space

The Estimation of the Errors

- Estimate the Error
 - With Random Samples
 - With Simulation (N-body or Semi-analytical)
 - With Mock Samples.
 - Different from the Random Sample, the Mock Sample takes the LSS information.
 - Gaussian field
 - Log-normal field

$$\tilde{\delta}(\mathbf{k}) = A(\mathbf{k}) + iB(\mathbf{k}),$$

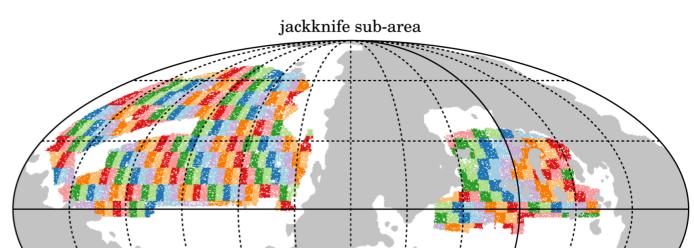
$$\langle A(\mathbf{k})^2 \rangle = \langle B(\mathbf{k})^2 \rangle = \frac{1}{2} P(k),$$

$$\delta_G(\mathbf{x}) = \mathcal{F}^{-1}[\delta(\mathbf{k})],$$

$$\rho(\mathbf{x}) = \exp\left[\delta(\mathbf{x}) - \frac{1}{2}\sigma^2\right].$$

The Estimation of the Errors

- Estimate the Error
 - With Random Samples
 - With Simulation (N-body or Semi-analytical)
 - With Mock Samples.
 - Different from the Random Sample, the Mock Sample takes the LSS information.
 - Gaussian field
 - Log-normal field
 - Jackknife sample



$$\text{CovJK}(\theta_a, \theta_b) = \frac{N-1}{N} \sum_{i=1}^{N} \left(\theta_i^{(a)} - \bar{\theta}^{(a)} \right) \left(\theta_i^{(b)} - \bar{\theta}^{(b)} \right),$$

Correct the Alias Effect

• The Alias Effect with Gridding the Galaxy Catalog

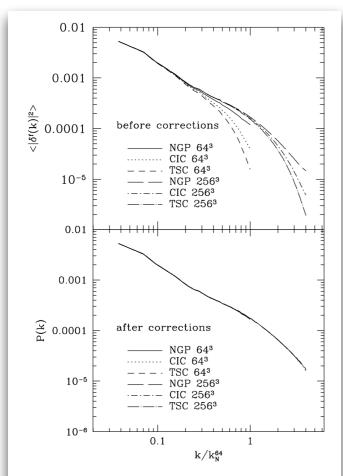


Fig. 2.—Six power spectra that we measured for an *N*-body simulation sample using three mass assignments (NGP, CIC, and TSC) and two grids (64³ and 256³ grid points), where k_N^{c4} is the Nyquist wavenumber for 64³ grid points. *Top*: Raw power spectra $\langle |\delta^f(k)|^2 \rangle$ estimated directly from the FFT (eq. [8]). *Bottom*: True power spectra P(k) reconstructed from the $\langle |\delta^f(k)|^2 \rangle$ following the procedure described in the text. The six reconstructed P(k) agree so well that their curves overlay each other.

THE ASTROPHYSICAL JOURNAL, 620:559–563, 2005 February 20 © 2005. The American Astronomical Society. All rights reserved. Printed in U.S.A.

CORRECTING FOR THE ALIAS EFFECT WHEN MEASURING THE POWER SPECTRUM USING A FAST FOURIER TRANSFORM

Y. P. JING

Shanghai Astronomical Observatory, The Partner Group of the Max-Planck-Institut für Astrophysik, Nandan Road 80, Shanghai 200030, China Received 2004 September 10; accepted 2004 October 28

ABSTRACT

Because of mass assignment onto grid points in the measurement of the power spectrum using a fast Fourier transform (FFT), the raw power spectrum $\langle |\delta^f(k)|^2 \rangle$ estimated with the FFT is not the same as the true power spectrum P(k). In this paper we derive a formula that relates $\langle |\delta^f(k)|^2 \rangle$ to P(k). For a sample of N discrete objects, the formula reads $\langle |\delta^f(k)|^2 \rangle = \sum_n [|W(k+2k_Nn)|^2 P(k+2k_Nn)+1/N|W(k+2k_Nn)|^2]$, where W(k) is the Fourier transform of the mass assignment function W(r), k_N is the Nyquist wavenumber, and n is an integer vector. The formula is different from that in some previous works in which the summation over n is neglected. For the nearest grid point, cloud-in-cell, and triangular-shaped cloud assignment functions, we show that the shot-noise term $\sum_n (1/N)|W(k+2k_Nn)|^2$ can be expressed by simple analytical functions. To reconstruct P(k) from the alias sum $\sum_n |W(k+2k_Nn)|^2 P(k+2k_Nn)$, we propose an iterative method. We test the method by applying it to an N-body simulation sample and show that the method can successfully recover P(k). The discussion is further generalized to samples with observational selection effects.

Subject headings: galaxies: clusters: general — large-scale structure of universe — methods: data analysis — methods: statistical

Summary for Galaxy Survey PS Estimation

- Real catalog for PS estimation
- Random catalog for shot noise and window function estimation
- Mock catalog for error estimation
 - Gaussian field
 - Log-normal field
 - Jackknife sample
- Correct the Alian Effects

$$\langle \tilde{\delta}(k)\tilde{\delta}^*(k)\rangle = \int |W(k-k')|^2 P(k')d^3k' + N(0)$$

$$W(r) = \frac{1}{P(k) + 1/n(r)}$$

$$\int |W(k-k')|^2 P(k')d^3k' = \langle \tilde{\delta}(k)\tilde{\delta}^*(k)\rangle - N(0)$$

Optical v.s. Radio

"Using what was then known of the physics of atoms, what common element would produce a spectral line at radio wavelengths"

- The HI in the Milky Way
 - Jan Oort 1932 measured the rotation of the Milky Way via stars in the optcial band

Jan Oort

Jan Oort in May 1961

Born 28 April 1900

Franeker, Friesland

Died 5 November 1992

(aged 92)

Leiden, South Holland

Nationality Dutch

Known for Oort cloud

Dark matter

Awards Vetlesen Prize (1966)

Kyoto Prize (1987)

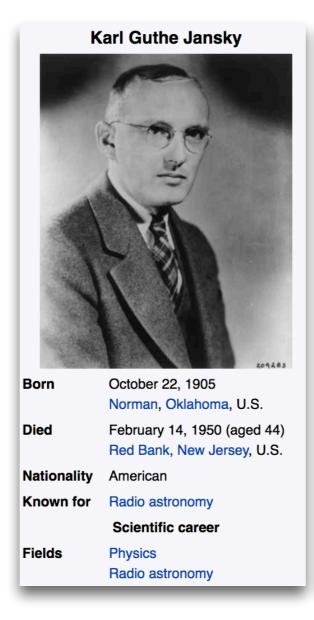
Scientific career

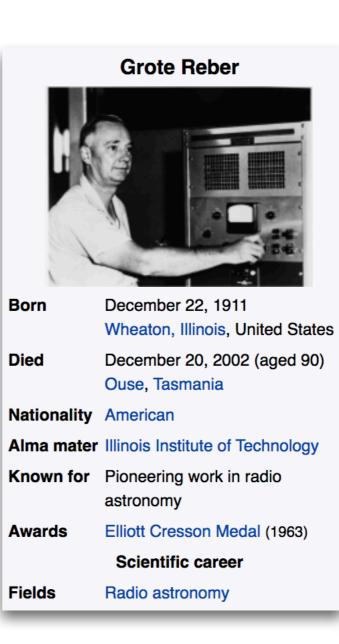
Fields Astronomy

Doctoral Jacobus Cornelius Kapteyn

advisor

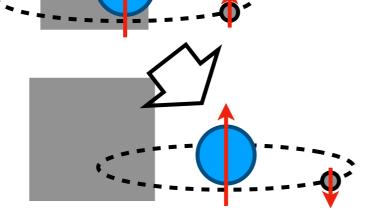
- The HI in the Milky Way
 - Jan Oort 1932 measured the rotation of the Milky Way via stars in the optcial band





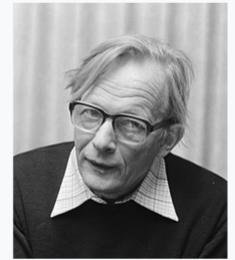
- The HI in the Milky Way
 - Hendrik van de Hulst 1944

"Using what was then known of the physics of atoms, what common element would produce a spectral line at radio wavelengths"



Hendrik van de Hulst 1944

- HI 21cm line
- 1420.406 MHz
- forbidden line
- $A = 2.87 \times 10^{-15} \,\mathrm{s}^{-1}$
- life time 11 million years



Hendrik C. van de Hulst in 1977

Born 19 November 1918

Utrecht, the Netherlands

Died 31 July 2000 (aged 81)

Leiden, the Netherlands

Nationality Dutch

Known for 21 cm hyperfine line

Anomalous diffraction theory

Awards Henry Draper Medal (1955)

Eddington Medal (1955) Rumford Medal (1964)

Bruce Medal (1978)

Karl Schwarzschild Medal (1995)

Scientific career

Jan Oort

Jan Oort in May 1961

Born 28 April 1900

Franeker, Friesland

Died 5 November 1992

(aged 92)

Leiden, South Holland

Nationality Dutch

Known for Oort cloud

Dark matter

Awards Vetlesen Prize (1966)

Kyoto Prize (1987)

Scientific career

Fields Astronomy

Doctoral Jacobus Cornelius Kapteyn

advisor

- The HI in the Milky Way
 - Even and Purcell at Harvard mad the discovery of Milky Way HI in 1951

1922/03/05

Measurement

Chicopee Falls, MA, USA

IEEE Morris E. Leeds Award

Harvard, Ewen Knight Corporation

Smith-Purcell effect

Scallop theorem

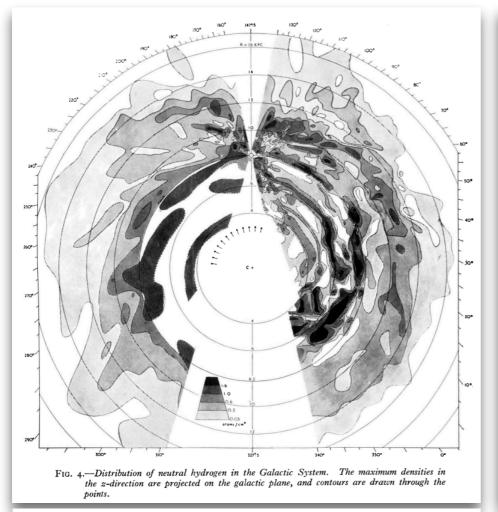
21 cm line

Born

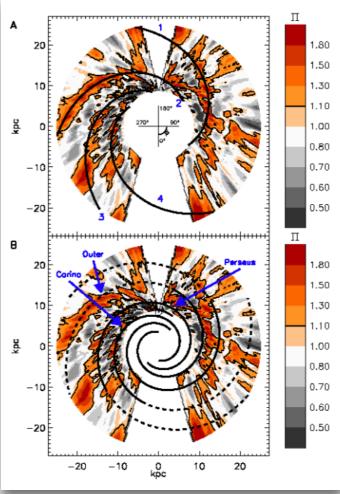
Died

Jan Oort

- The HI in the Milky Way
 - Mapping HI in the Milky Way.

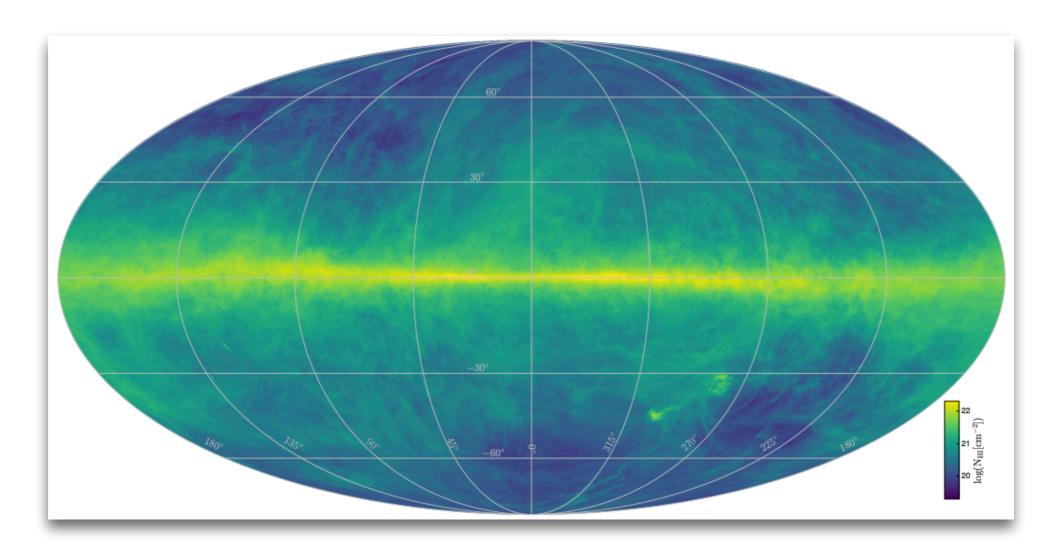


Oort, J. H., Kerr, F. J., and Westerhout, G., "The galactic system as a spiral nebula (Council Note)", Monthly Notices of the Royal Astronomical Society, vol. 118, p. 379, 1958. doi:10.1093/mnras/118.4.379.



Levine, E. S., Blitz, L., and Heiles, C., "The Spiral Structure of the Outer Milky Way in Hydrogen", Science, vol. 312, no. 5781, pp. 1773–1777, 2006. doi:10.1126/science.1128455.

- The HI in the Milky Way
 - Mapping HI in the Milky Way.

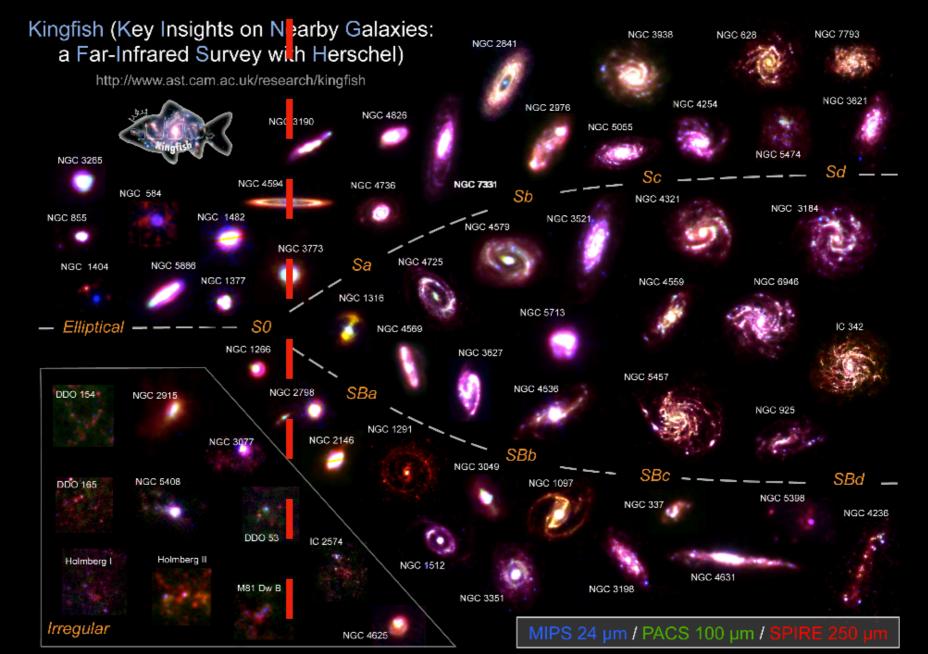


HI4PI collaboration: HI4PI: A full-sky H i survey based on EBHIS and GASS 2016 arxiv:1610.06175

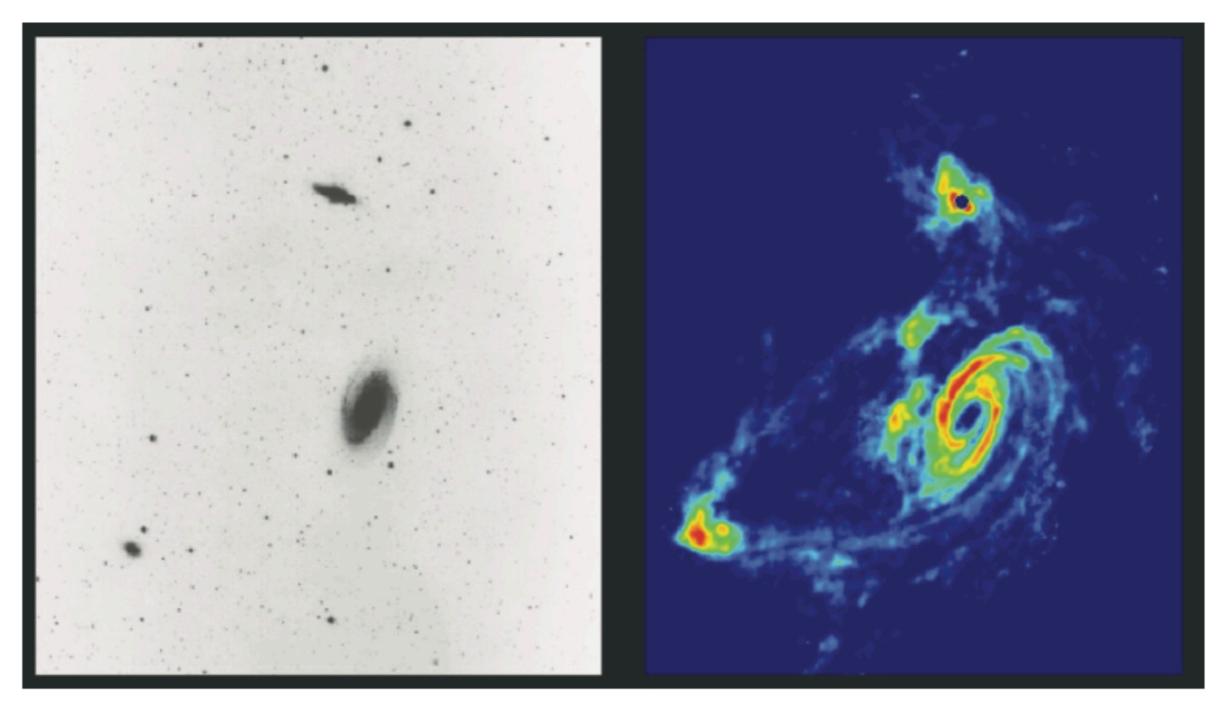
HI in galaxies

Early Type Galaxy
Old Galaxies

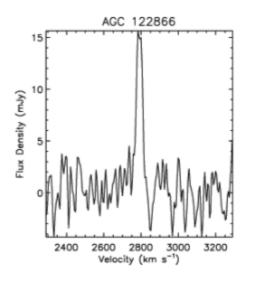
Late Type Galaxy Young Galaxies

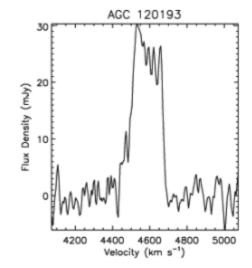


• HI in IGM

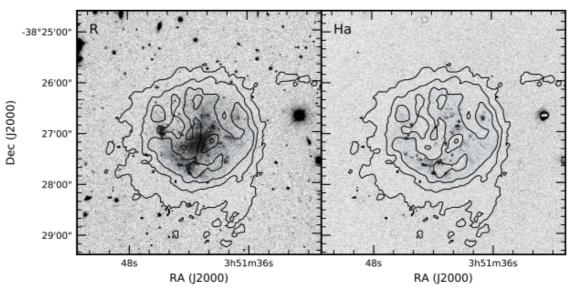


The HI astronomy





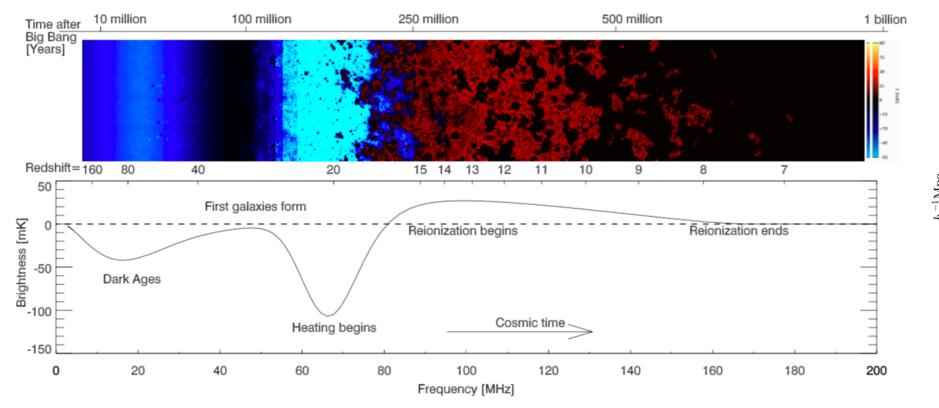
ALFALFA Survey



MeerKAT HI commissioning observations of MHONGOOSE galaxy ESO 302-G014 arXiv:2009.09766

Fig. 6. Overlays of the MeerKAT r=0.5 integrated H_I map on SINGG *R*-band (left panel) and H α (right panel) images. For clarity, only a limited number of column density contours are shown. These are $(1.0, 5.0, 10.0) \cdot 10^{20}$ cm⁻². Darker shading indicates the highest column densities.

- The HI astronomy
- The HI cosmology



67.2

67.0 $OCC_{N_{1}-2}$ 66.8

66.4

10²³

10²²

10²¹

10²⁰

10¹⁹

10¹⁸

10¹⁷

10¹⁶

10¹⁵

10¹⁴

10¹³

Pritchard & Loeb 2012

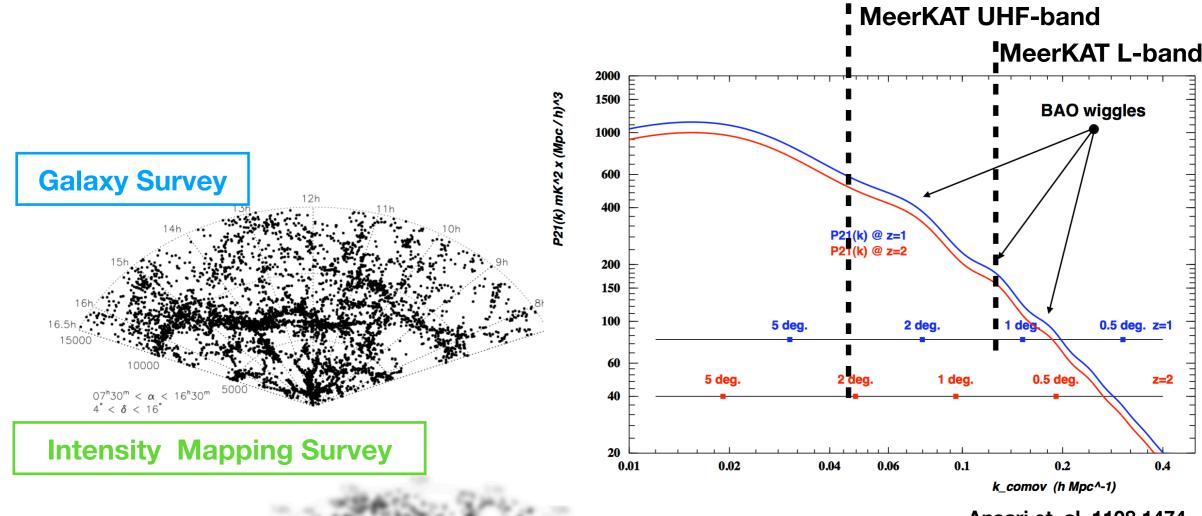
Villaescusa-Navarro 2018

- The HI astronomy
- The HI cosmology
- HI Galaxy survey
 - ALFALFA
 - HIJASS
 - HIPASS
 - VLA
 - ASKAP/MeerKAT

Radio Telescope: Not able to resolve individual galaxy

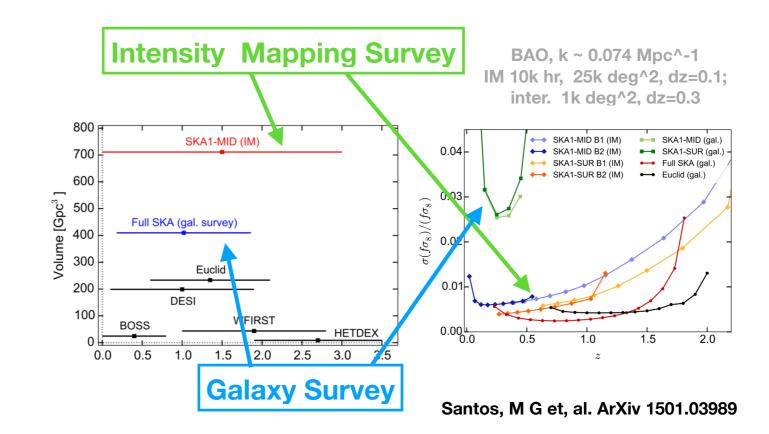
- The HI astronomy
- The HI cosmology
- HI Galaxy survey
 - ALFALFA
 - HIJASS
 - HIPASS
 - VLA
 - ASKAP/MeerKAT
- HI Intensity Mapping

HI Intensity Mapping (IM)



HI IM for cosmology

- Provide huge observation volume for cosmology studies
- Multi redshifts
- Multi tracer
- Cosmological Large-scale structure (LSS)
- Baryon Acoustic Oscillation (BAO)
- Redshift space distortion (RSD)
- Dark Energy
- Omega HI
- primordial non-Gaussianlity
- EoR

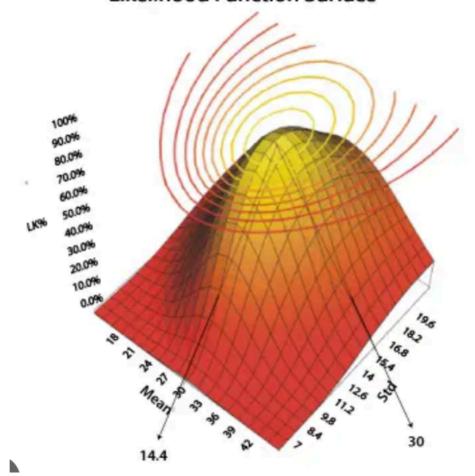


The Fisher Information Matrix is given by

$$F_{ij} = \left\langle rac{\partial^2 \ln \mathcal{L}}{\partial heta_i \partial heta_j}
ight
angle$$

Where $L = \exp(-0.5\chi^2)$ is the likelihood function.

Likelihood Function Surface



$$F_{ij} = \left\langle \frac{\partial^2 \ln \mathcal{L}}{\partial \theta_i \partial \theta_j} \right
angle$$

$$\mathbf{P}^{\text{th}}(I_{r_i}(\lambda_i))^2$$

$$\chi^{2} = \sum_{k} \frac{(\hat{P}(k) - P^{\text{th}}(k, \{\lambda_{\alpha}\}))^{2}}{\text{Var}\left[\hat{P}(k)\right]} = \chi^{2}(\bar{\lambda}) + \mathcal{F}(\lambda - \bar{\lambda})^{2}$$

$$\mathcal{F} = \frac{1}{2} \frac{\partial^2 \chi^2}{\partial \lambda^2} \Big|_{\lambda = \bar{\lambda}} = \sum_{k} \frac{1}{\text{Var} \left[\hat{P}(k) \right]} \left(\left(\frac{\partial P^{\text{th}}(k)}{\partial \lambda} \right)^2 + \left(P^{\text{th}}(k) - \hat{P}(k) \right) \frac{\partial^2 P^{\text{th}}(k)}{\partial \lambda^2} \right)$$

$$F_{\alpha\beta} = \sum_{k} \frac{1}{\text{Var} \left[\hat{P}(k) \right]} \left(\left(\frac{\partial P^{\text{th}}(k)}{\partial \lambda_{\alpha}} \right) \left(\frac{\partial P^{\text{th}}(k)}{\partial \lambda_{\beta}} \right) \right)$$

$$P(\mathbf{k}) = \langle \delta(\mathbf{k}) \delta^*(\mathbf{k}) \rangle = |\delta(\mathbf{k})|^2$$

$$\hat{P}(k_{\alpha}) = \frac{1}{m_{k,\alpha}} \sum_{\mathbf{k}}^{||\mathbf{k}| - k_{\alpha}| < \Delta k/2} |\delta(\mathbf{k})|^{2}, \quad m_{k,\alpha} = \frac{1}{2} \frac{4\pi k_{\alpha}^{2} \Delta k}{k_{F}^{3}} = \frac{1}{4\pi^{2}} V k_{\alpha}^{2} \Delta k$$

$$\delta(\mathbf{k}) = \delta_{\text{HI}}(\mathbf{k}) + \delta_{\text{Noise}}(\mathbf{k})$$

$$\hat{P}_{\mathrm{HI}}(k_{\alpha}) = \frac{1}{m_{k,\alpha}} \sum_{\mathbf{k}}^{||\mathbf{k}| - k_{\alpha}| < \Delta k/2} |\delta(\mathbf{k})|^2 - P_N$$

$$Cov_{\alpha\beta} = \langle \hat{P}_{HI}(k_{\alpha})\hat{P}_{HI}(k_{\beta})\rangle - \langle \hat{P}_{HI}(k_{\alpha})\rangle\langle \hat{P}_{HI}(k_{\beta})\rangle = \dots = \frac{2}{m_{k,\alpha}} \left(P_{HI}(k_{\alpha}) + P_{N}\right)^{2} \delta_{\alpha\beta}$$

$$P(\mathbf{k}) = \langle \delta(\mathbf{k}) \delta^*(\mathbf{k}) \rangle = |\delta(\mathbf{k})|^2$$

$$\hat{P}(k_{\alpha}) = \frac{1}{m_{k,\alpha}} \sum_{\mathbf{k}}^{||\mathbf{k}| - k_{\alpha}| < \Delta k/2} |\delta(\mathbf{k})|^2, \quad m_{k,\alpha} = \frac{1}{2} \frac{4\pi k_{\alpha}^2 \Delta k}{k_F^3} = \frac{1}{4\pi^2} V k_{\alpha}^2 \Delta k$$

$$\delta(\mathbf{k}) = \delta_{\text{HI}}(\mathbf{k}) + \delta_{\text{Noise}}(\mathbf{k})$$

 $\delta(\mathbf{k}) = \delta_{\mathrm{HI}}(\mathbf{k}) + \delta_{\mathrm{Noise}}(\mathbf{k})$ Scott Dodelson & Fabian Sch Modon Cosmology 2021 Chapter 14.4.2 Scott Dodelson & Fabian Schmidt **Chapter 14.4.2**

$$\hat{P}_{\mathrm{HI}}(k_{\alpha}) = \frac{1}{m_{k,\alpha}} \sum_{\mathbf{k}}^{||\mathbf{k}| - k_{\alpha}| < \Delta k/2} |\delta(\mathbf{k})|^2 - P_N$$

$$Cov_{\alpha\beta} = \langle \hat{P}_{HI}(k_{\alpha})\hat{P}_{HI}(k_{\beta})\rangle - \langle \hat{P}_{HI}(k_{\alpha})\rangle\langle \hat{P}_{HI}(k_{\beta})\rangle = \dots = \frac{2}{m_{k,\alpha}} \left(P_{HI}(k_{\alpha}) + P_{N}\right)^{2} \delta_{\alpha\beta}$$

$$\sqrt{\operatorname{Var}\left[\hat{P}_{\mathrm{HI}}(k_{\alpha})\right]} = \frac{2}{m_{k,\alpha}} \left(P_{\mathrm{HI}}(k) + P_{N}\right)$$

$$\hat{P}(k_{\alpha}) = \frac{1}{m_{k,\alpha}} \sum_{\mathbf{k}}^{||\mathbf{k}| - k_{\alpha}| < \Delta k/2} |\delta(\mathbf{k})|^{2}, \quad m_{k,\alpha} = \frac{1}{2} \frac{4\pi k_{\alpha}^{2} \Delta k}{k_{F}^{3}} = \frac{1}{4\pi^{2}} V k_{\alpha}^{2} \Delta k$$

$$\sqrt{\text{Var} \left[\hat{P}_{\text{HI}}(k_{\alpha})\right]} = \frac{2}{m_{k,\alpha}} \left(P_{\text{HI}}(k) + P_{N}\right)$$

$$\chi^{2} = \sum_{k} \frac{(\hat{P}(k) - P^{\text{th}}(k, \{\lambda_{\alpha}\}))^{2}}{\text{Var}\left[\hat{P}(k)\right]} = \chi^{2}(\bar{\lambda}) + \mathcal{F}(\lambda - \bar{\lambda})^{2}$$

$$\mathcal{F} = \frac{1}{2} \frac{\partial^2 \chi^2}{\partial \lambda^2} \Big|_{\lambda = \bar{\lambda}} = \sum_{k} \frac{1}{\text{Var} \left[\hat{P}(k) \right]} \left(\left(\frac{\partial P^{\text{th}}(k)}{\partial \lambda} \right)^2 + \left(P^{\text{th}}(k) - \hat{P}(k) \right) \frac{\partial^2 P^{\text{th}}(k)}{\partial \lambda^2} \right)$$

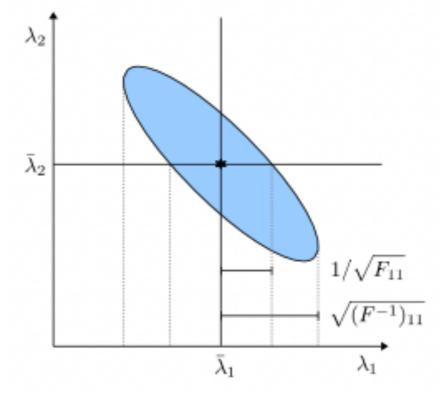
$$F_{\alpha\beta} = \sum_{k} \frac{1}{\text{Var} \left[\hat{P}(k) \right]} \left(\left(\frac{\partial P^{\text{th}}(k)}{\partial \lambda_{\alpha}} \right) \left(\frac{\partial P^{\text{th}}(k)}{\partial \lambda_{\beta}} \right) \right)$$

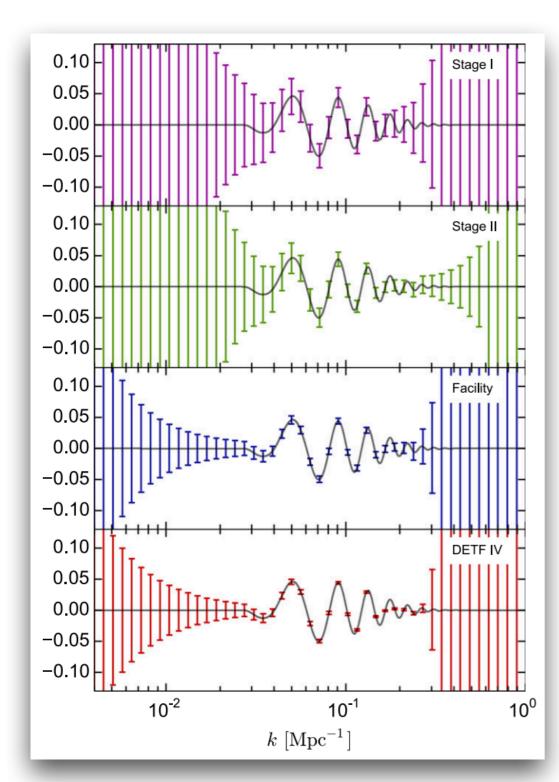
$$\hat{P}(k_{\alpha}) = \frac{1}{m_{k,\alpha}} \sum_{\mathbf{k}}^{||\mathbf{k}| - k_{\alpha}| < \Delta k/2} |\delta(\mathbf{k})|^{2}, \quad m_{k,\alpha} = \frac{1}{2} \frac{4\pi k_{\alpha}^{2} \Delta k}{k_{F}^{3}} = \frac{1}{4\pi^{2}} V k_{\alpha}^{2} \Delta k$$

$$\sqrt{\operatorname{Var} \left[\hat{P}_{\mathrm{HI}}(k_{\alpha})\right]} = \frac{2}{m_{k,\alpha}} \left(P_{\mathrm{HI}}(k) + P_{N}\right)$$

$$F_{\alpha\beta} = \sum_{k} \frac{1}{\operatorname{Var} \left[\hat{P}(k)\right]} \left(\left(\frac{\partial P^{\mathrm{th}}(k)}{\partial \lambda_{\alpha}}\right) \left(\frac{\partial P^{\mathrm{th}}(k)}{\partial \lambda_{\beta}}\right)\right)$$

$$\left(\frac{\Delta P_a}{P_a}\right)^2 = \left(\frac{1}{2}V_{\text{bin}}\int \frac{k^2 d \,\mu \,d \,k}{(2\pi)^2} \left(\frac{P^{\text{HI}}(k,\mu)}{P^{\text{HI}}(k,\mu) + N(k,\mu)}\right)^2\right)^{-1}$$
 $\bar{\lambda}_2$





GBT Parkes

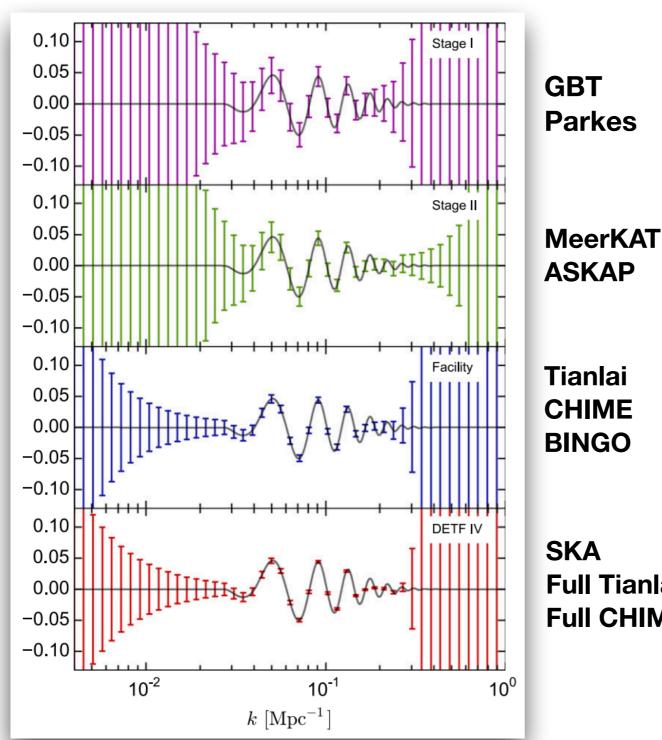
MeerKAT ASKAP

Tianlai CHIME BINGO

SKA Full Tianlai Full CHIME

$$\left(\frac{\Delta P_a}{P_a}\right)^2 = \left(\frac{1}{2}V_{\text{bin}}\int \frac{k^2 d \,\mu \,d \,k}{(2\pi)^2} \left(\frac{P^{\text{HI}}(k,\mu)}{P^{\text{HI}}(k,\mu) + N(k,\mu)}\right)^2\right)^{-1}$$

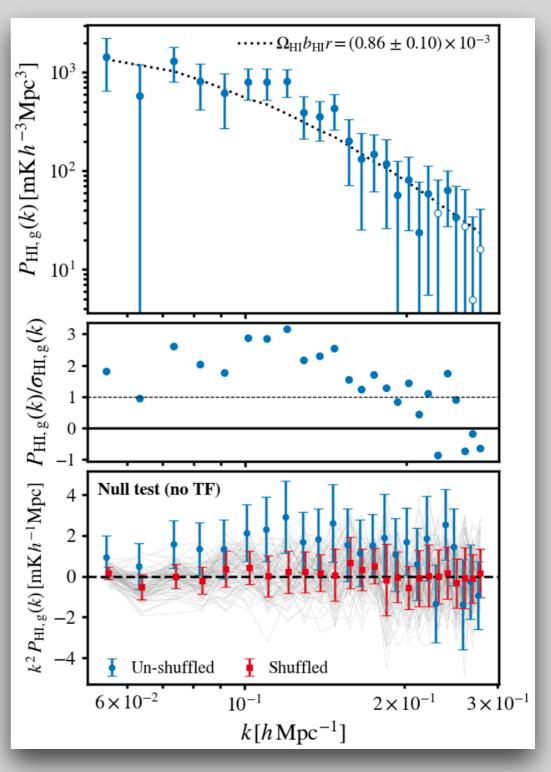
• Late-time cosmology with 21 cm intensity mapping experiments



Late-time cosmology with 21 cm intensity mapping experiments

> Bull P. et al 2015, ApJ, 803, 21. arXiv: 1405.1452

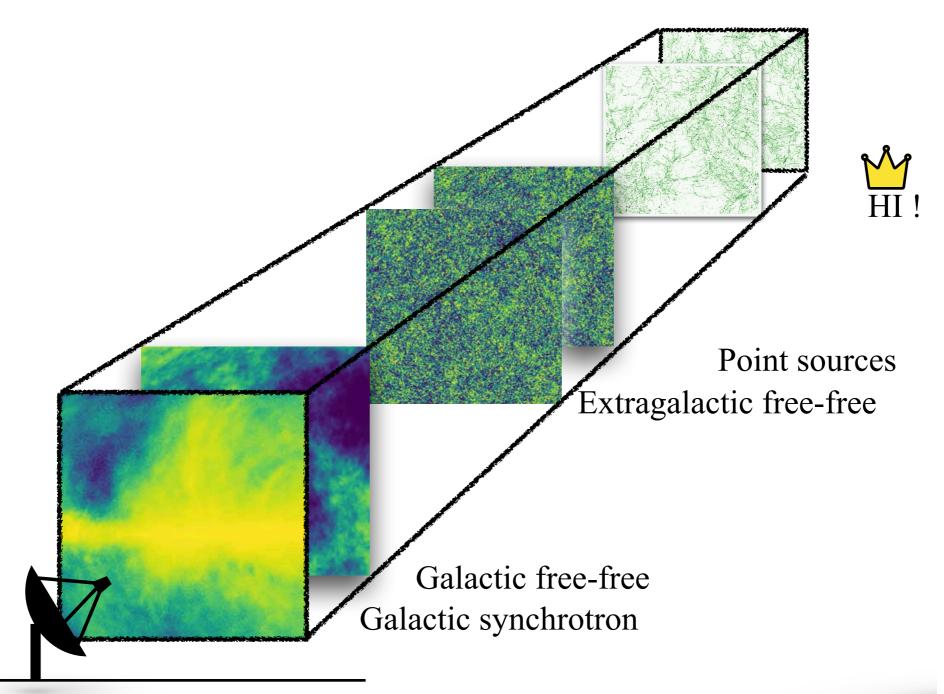
Full Tianlai Full CHIME



10.5 hour HI IM observation using MeerKAT 64 dishes, we achieve 7.7σ detection of the cross-correlation power spectrum;

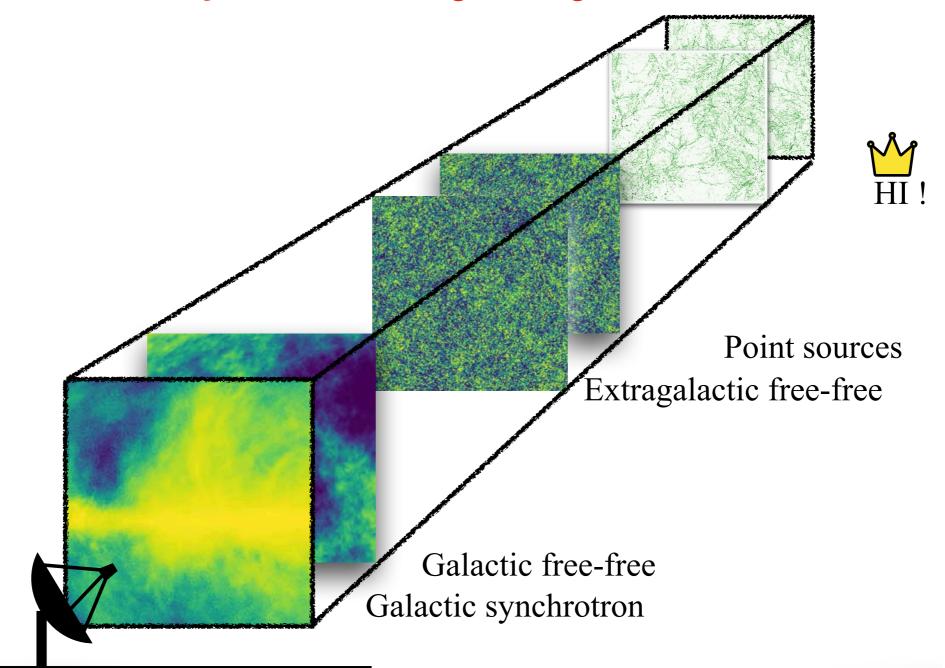
> Cunnington S., Li Y., Santos M.~G., et al. arXiv: 2206.01579

The Foreground

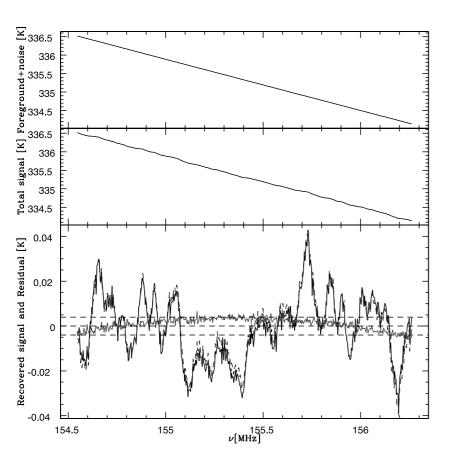


The Foreground

The secret to successfully recovering the underlying HI fluctuation is to correctly remove the bright foreground contamination.



- Model dependent foreground subtraction method
 - Logarithmic polynomial fitting



Wang, X., et. al (2006). ApJ, 650(2), 529-537.

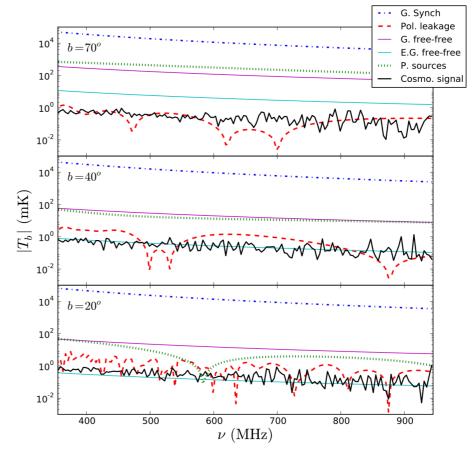
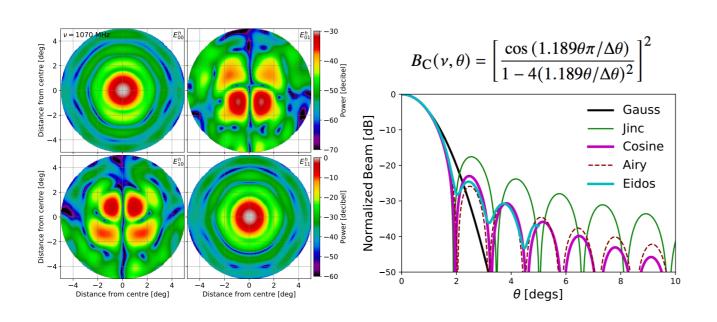
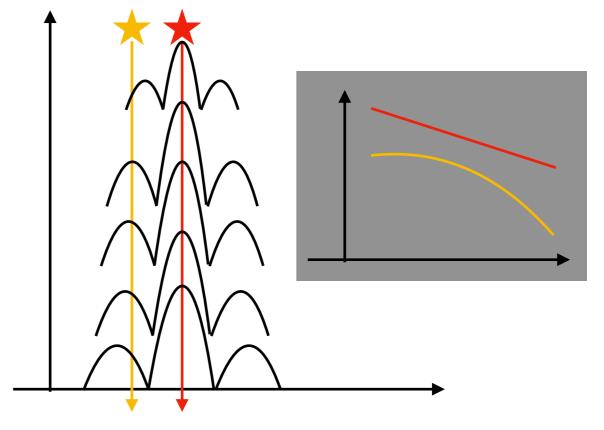


Figure 8. Frequency dependence of the different foregrounds and the cosmological signal along LOS with different galactic latitudes (given in the top-right corner of each panel). The effect of Faraday decorrelation increases as we approach the galactic plane, making the subtraction of the polarization leakage more challenging.

Alonso, D. et al. (2014) MNRAS 444, 3183

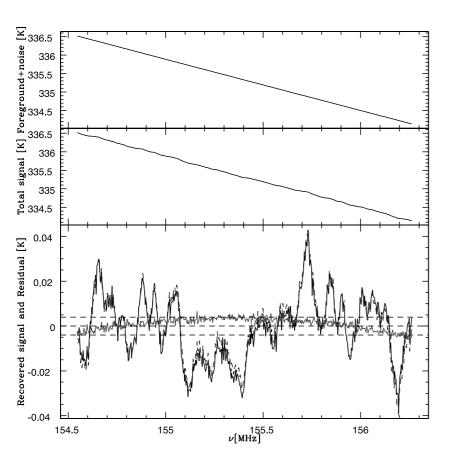
- Model dependent foreground subtraction method
 - Logarithmic polynomial fitting





Model dependent method failed when there is systematic effect.

- Model dependent foreground subtraction method
 - Logarithmic polynomial fitting



Wang, X., et. al (2006). ApJ, 650(2), 529-537.

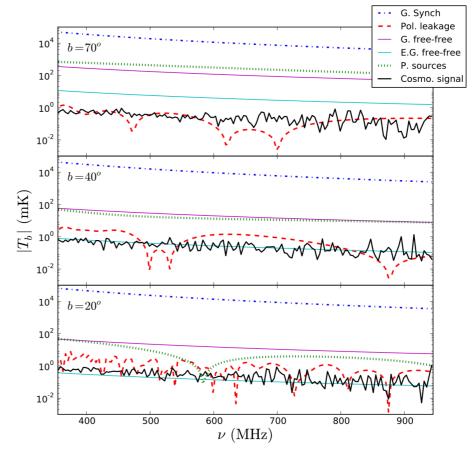


Figure 8. Frequency dependence of the different foregrounds and the cosmological signal along LOS with different galactic latitudes (given in the top-right corner of each panel). The effect of Faraday decorrelation increases as we approach the galactic plane, making the subtraction of the polarization leakage more challenging.

Alonso, D. et al. (2014) MNRAS 444, 3183

- Model independent foreground subtraction method
 - Principle Component Analysis (PCA)

Assume that FG is strongly correlated across frequency

$$C_{ij} = \frac{1}{N} \sum_{p} m(\nu_i, n_p) m(\nu_j, n_p)$$

$$\mathbf{CV} = \mathbf{C} \mathbf{\Lambda}$$

Cross-correlation function with GBT HIIM x DEEP2
T.-C. Chang et al. 2010 Nature Vol 466

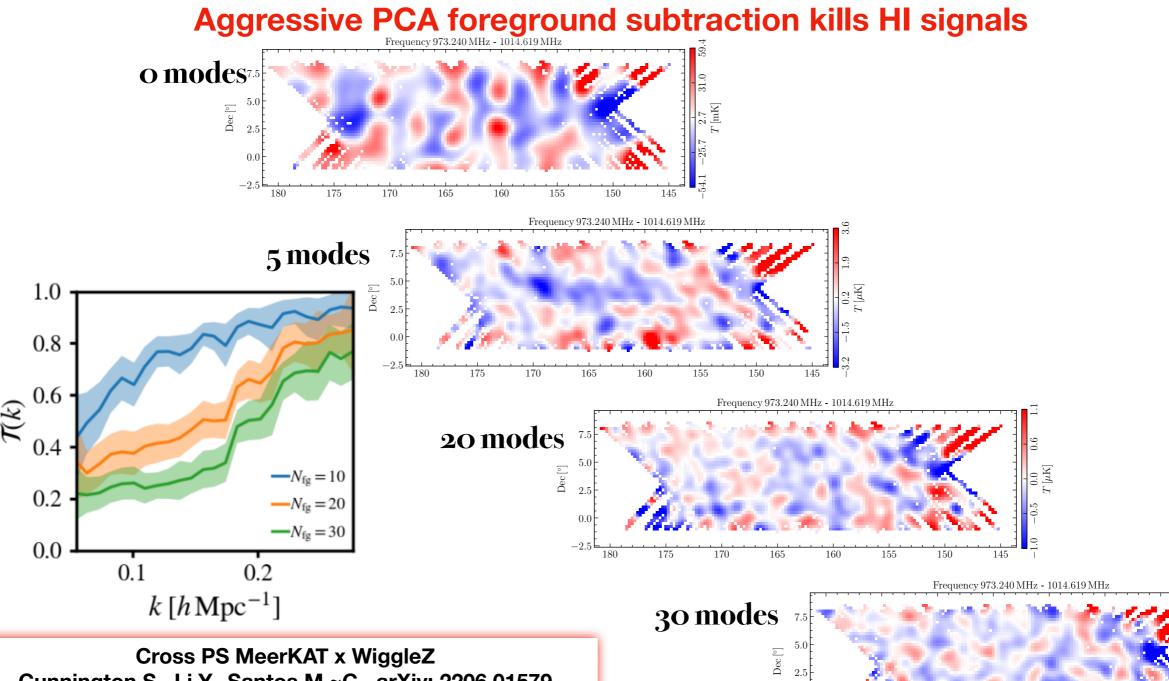
Cross PS GBT HIIM x WiggleZ K. Masui et al 2013 ApJ 763L 20M

Cross PS PKS x 2dF C. Anderson, N. J. Luciw, Y. Li et, al 2018, MNRAS, 476, 3382.

Cross PS MeerKAT x WiggleZ
Cunnington S., Li Y., Santos M.~G., arXiv: 2206.01579

GBT Auto PS Switzer E.~R., et al., 2013, MNRAS, 434, L46.

MeerKAT HI IM



RA [°]

Cunnington S., Li Y., Santos M.~G., arXiv: 2206.01579

• The noise inverse weight

$$\langle \tilde{\delta}(k)\tilde{\delta}^{*}(k)\rangle = \int |W(k-k')|^{2} P(k')d^{3}k' + N(0)$$

$$W(r) = \frac{1}{P(k) + 1/n(r)} \implies W(r) = \frac{1}{P(k) + 1/n(r) + P_{N}}$$

$$\int |W(k-k')|^{2} P(k')d^{3}k' = \langle \tilde{\delta}(k)\tilde{\delta}^{*}(k)\rangle - N(0)$$

• The noise inverse weight

$$\langle \tilde{\delta}(k)\tilde{\delta}^*(k)\rangle = \int |W(k-k')|^2 P(k')d^3k' + N(0)$$

$$W(r) = \frac{1}{P(k) + 1/n(r)} \Longrightarrow W(r) = \frac{1}{P(k) + 1/n(r) + P_N}$$

$$\int |W(k-k')|^2 P(k')d^3k' = \langle \tilde{\delta}(k)\tilde{\delta}^*(k)\rangle - N(0)$$

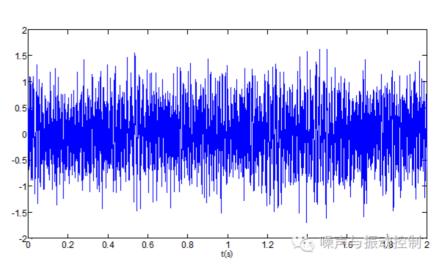
天线温度

噪声功率 vs 噪声方差

- $V = \alpha G k \Delta \nu (T_{\rm A} + T_{\rm sys})$
 - 噪声抬高系统的平均功率
 - 噪声本身产生电压的随机涨落

$$\sigma = \frac{T_{\rm sys}}{\sqrt{\delta t \delta \nu}}$$

• 表征系统灵敏度



The noise inverse weight

$$\langle \tilde{\delta}(k)\tilde{\delta}^{*}(k)\rangle = \int |W(k-k')|^{2} P(k')d^{3}k' + N(0)$$

$$W(r) = \frac{1}{P(k) + 1/n(r)} \implies W(r) = \frac{1}{P(k) + 1/n(r) + P_{N}}$$

$$\int |W(k-k')|^{2} P(k')d^{3}k' = \langle \tilde{\delta}(k)\tilde{\delta}^{*}(k)\rangle - N(0)$$

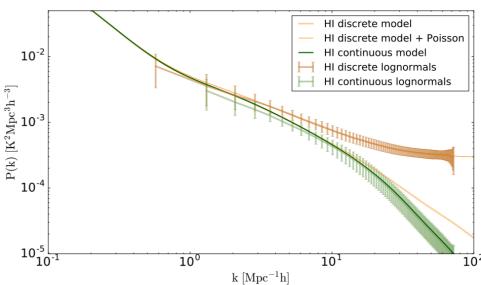


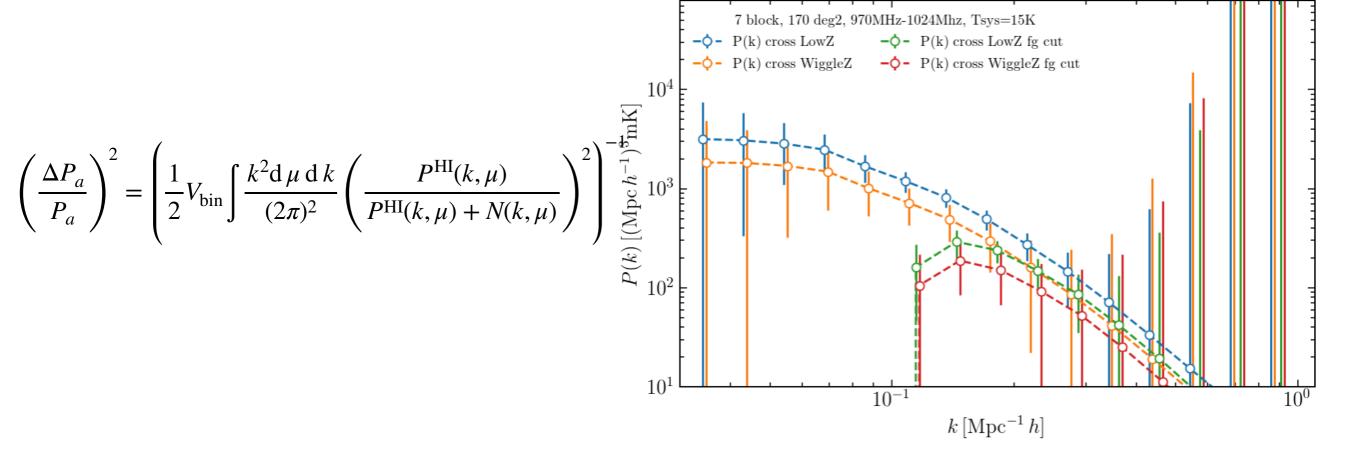
Figure 4. The HI power spectra predicted by HALOMOD for the HI continuous model and the HI discrete model in comparison with a average power spectrum of 100 lognormal realisations with a box of $15\mathrm{Mpc}/h$ drawn from the respective galaxy HOD. Note that the HI continuous model does not include a scale-independent Poisson noise contribution since it is estimated from a continuum field. We show HALOMOD predictions including and excluding Poisson noise contribution.

The noise inverse weight

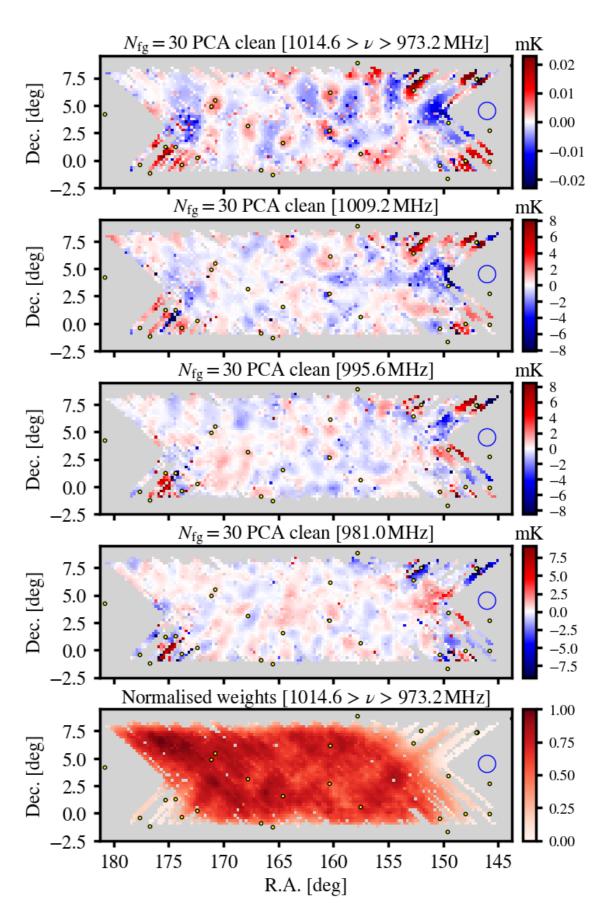
$$\langle \tilde{\delta}(k)\tilde{\delta}^*(k)\rangle = \int |W(k-k')|^2 P(k')d^3k' + N(0)$$

$$W(r) = \frac{1}{P(k) + 1/n(r)} \longrightarrow W(r) = \frac{1}{P(k) + 1/n(r) + P_N}$$

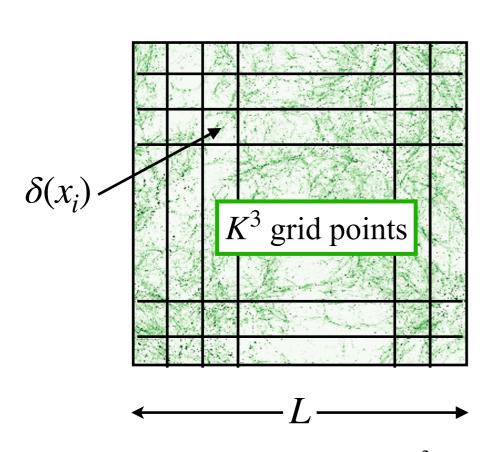
$$\int |W(k-k')|^2 P(k')d^3k' = \langle \tilde{\delta}(k)\tilde{\delta}^*(k)\rangle - N(0)$$

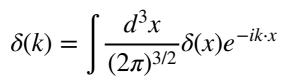


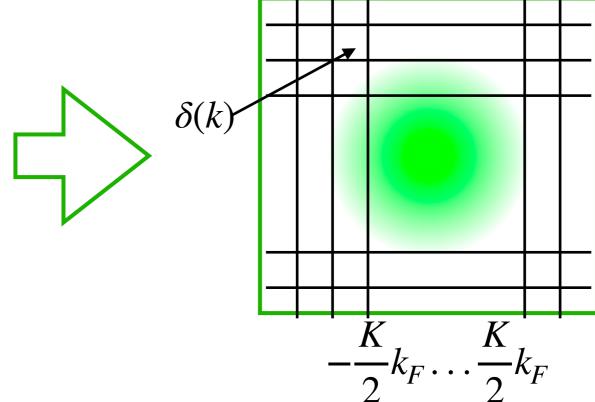
- The HI IM maps
 - Zero-mean (pre-whitened)



Fourier transform vs Fast Fourier Transform (FFT)

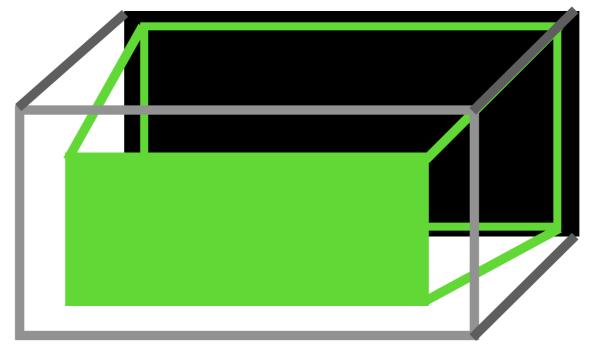






$$\delta(\mathbf{k}) = L^{3/2} \sum_{i}^{K^3} \delta(\mathbf{x}_i) e^{-i\mathbf{k}\cdot\mathbf{x}}, \quad \mathbf{k} \in (n_x, n_y, n_z) k_F, \quad k_F = 2\pi/L$$

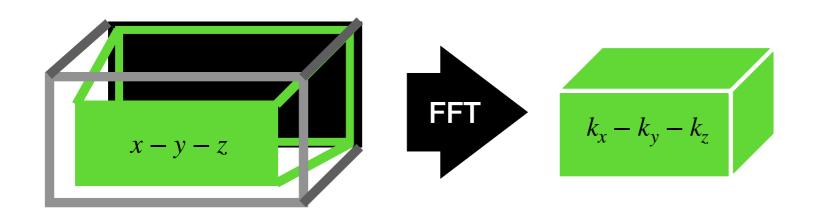
- The HI IM maps
- Map to Cube
 - Nearest-Grid-Point (NGP)
 - Clouds-in-cell (CIC)



- The HI IM maps
- Map to Cube
 - Nearest-Grid-Point (NGP)
 - Clouds-in-cell (CIC)
- FFT

$$\delta(\mathbf{k}) = L^{3/2} \sum_{i}^{K^3} \delta(\mathbf{x}_i) e^{-i\mathbf{k}\cdot\mathbf{x}}, \quad \mathbf{k} \in (n_x, n_y, n_z) k_F, \quad k_F = 2\pi/L$$

$$P(\mathbf{k}) = \text{Real} \left[\delta(\mathbf{k}) \delta^*(\mathbf{k}) \right]$$

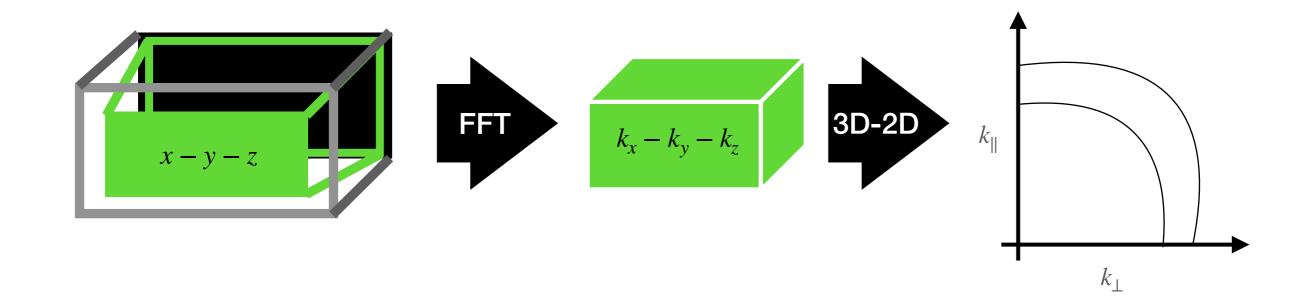


- The HI IM maps
- Map to Cube
 - Nearest-Grid-Point (NGP)
 - Clouds-in-cell (CIC)
- FFT

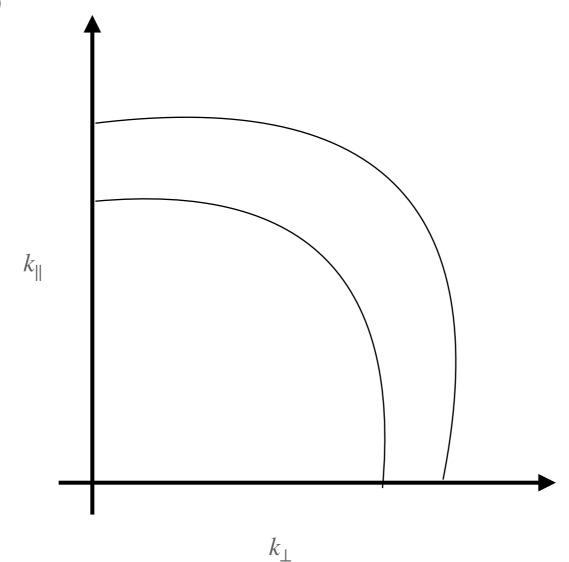
$$\delta(\mathbf{k}) = L^{3/2} \sum_{i}^{K^3} \delta(\mathbf{x}_i) e^{-i\mathbf{k} \cdot \mathbf{x}}, \quad \mathbf{k} \in (n_x, n_y, n_z) k_F, \quad k_F = 2\pi/L$$

$$P(\mathbf{k}) = \text{Real}\left[\delta(\mathbf{k})\delta^*(\mathbf{k})\right]$$

$$P(k_{\perp}, k_{\parallel}) = \frac{1}{N_{\rm m}} \sum_{k_x, k_y} P(k_x, k_y, k_z)$$



- The HI IM maps
- Map to Cube
 - Nearest-Grid-Point (NGP)
 - Clouds-in-cell (CIC)
- FFT



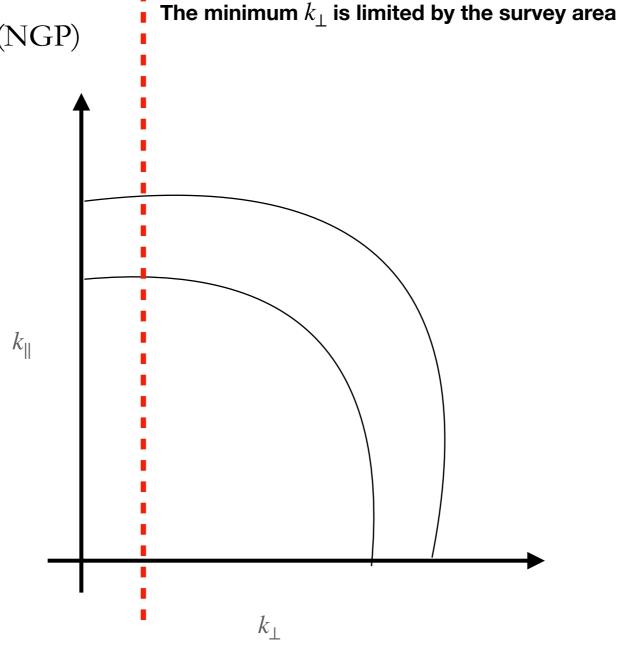
• The HI IM maps

Map to Cube

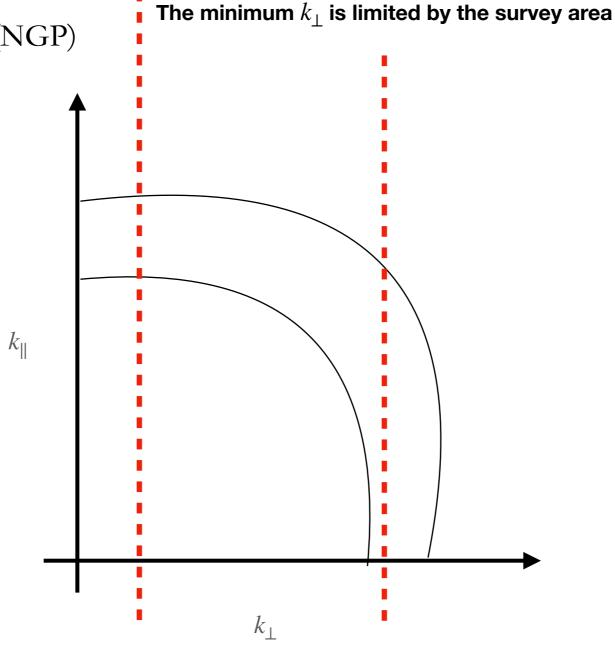
• Nearest-Grid-Point (NGP)

• Clouds-in-cell (CIC)

• FFT



- The HI IM maps
- Map to Cube
 - Nearest-Grid-Point (NGP)
 - Clouds-in-cell (CIC)
- FFT



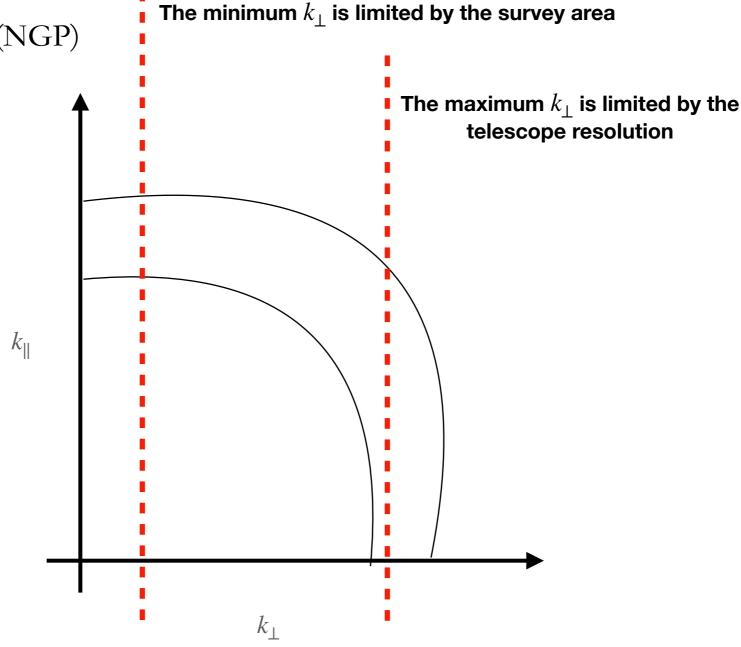
• The HI IM maps

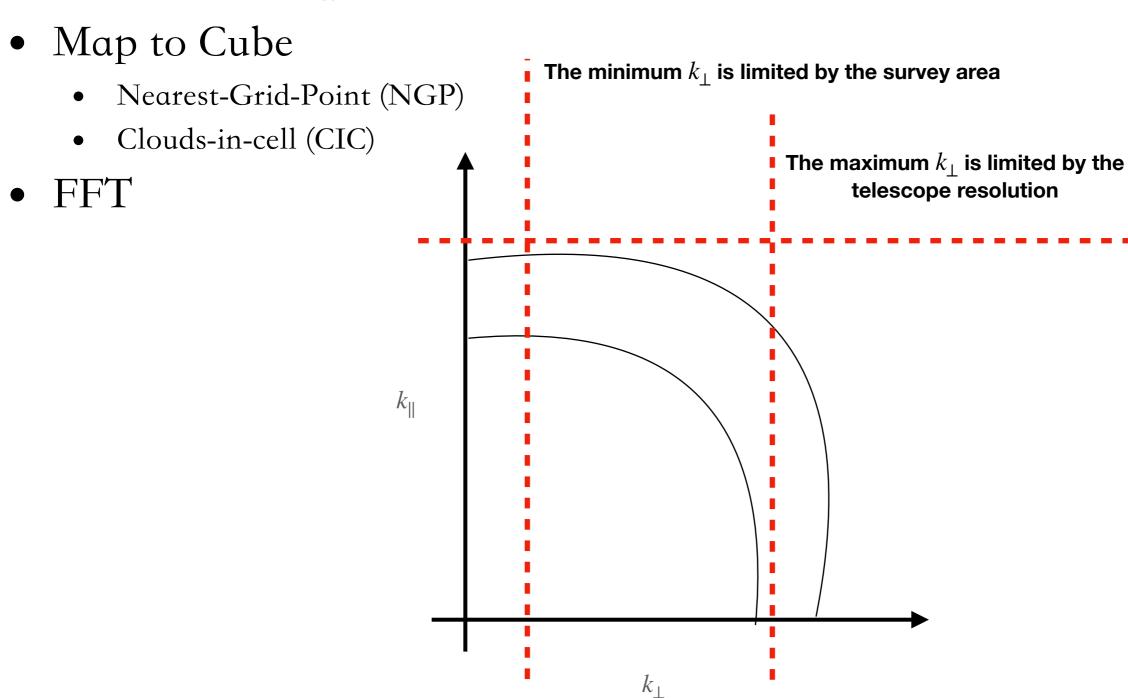
Map to Cube

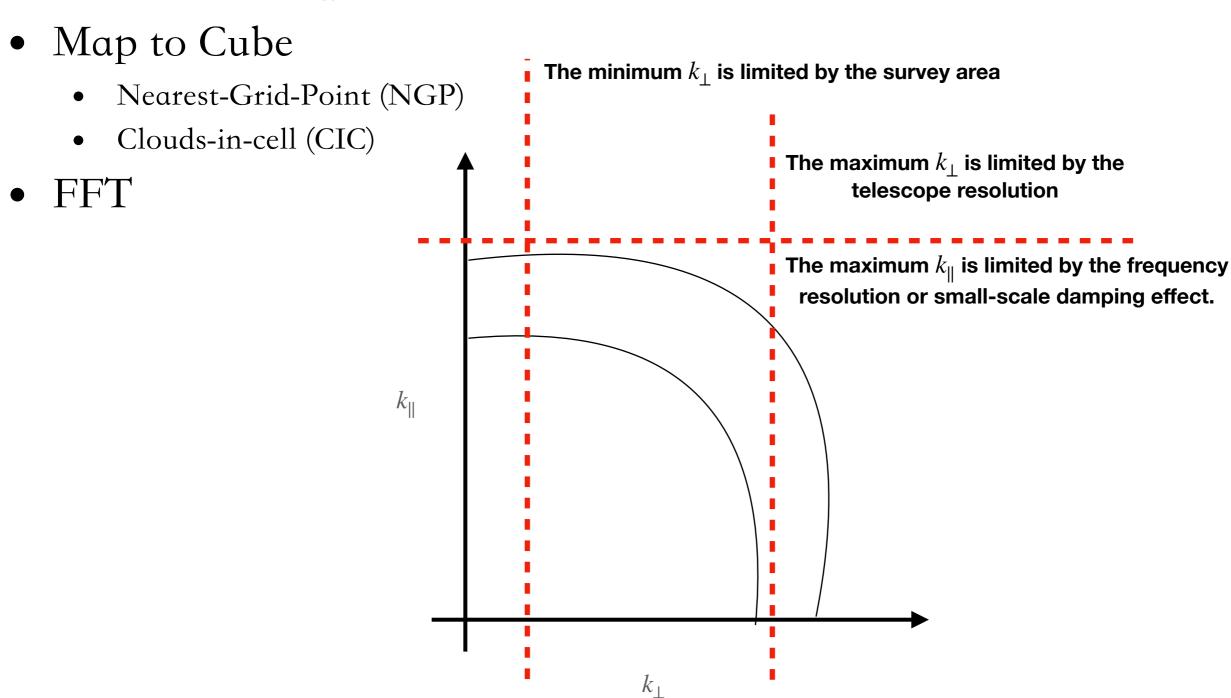
• Nearest-Grid-Point (NGP)

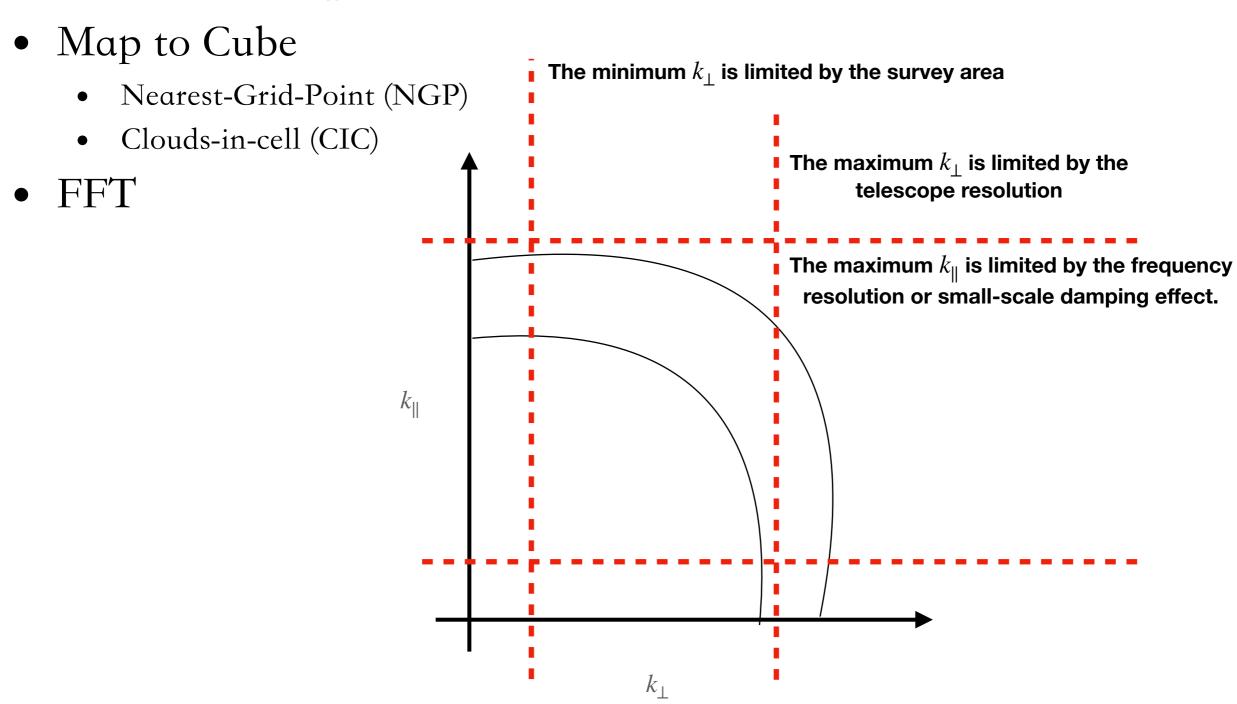
• Clouds-in-cell (CIC)

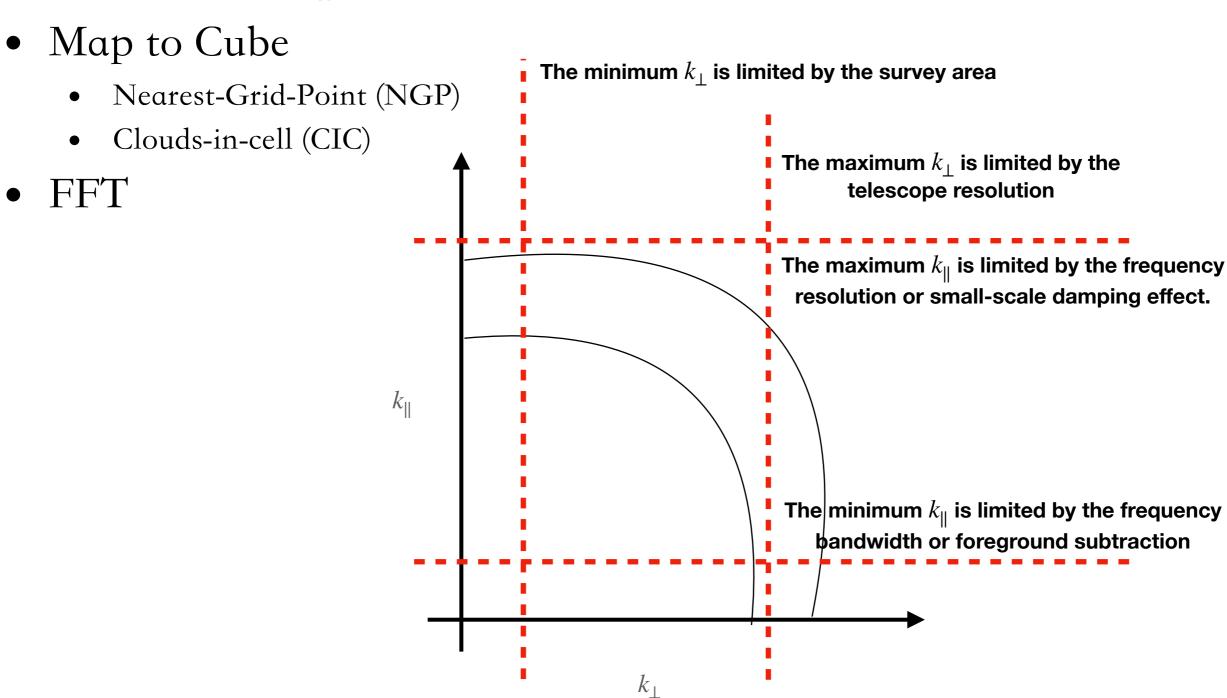
• FFT

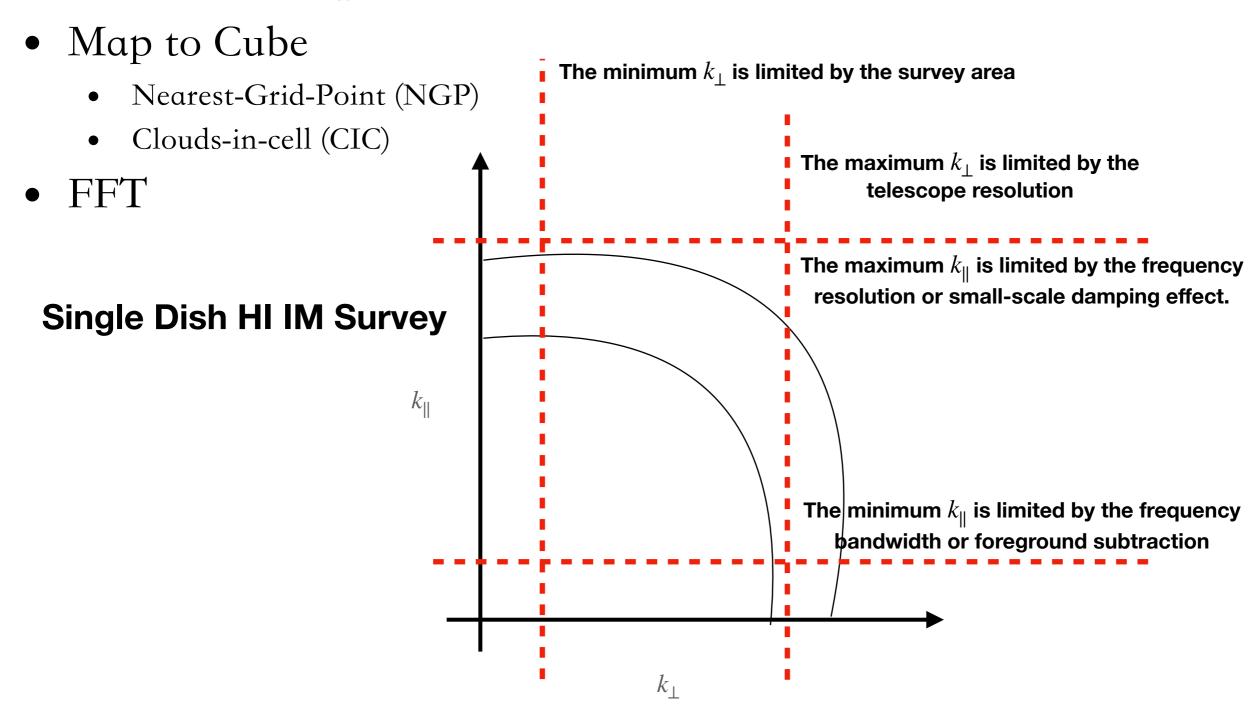










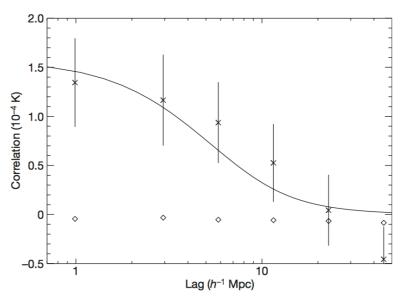


- Cross-correlation between different tracers
 - To get an unbiased PS from the foreground residual
 - HI x Optical Galaxy Sample

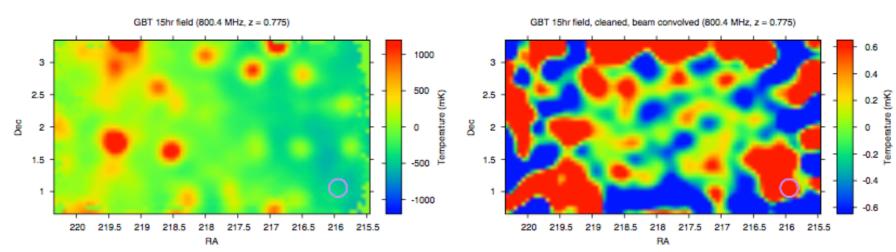
$$\delta(\mathbf{k}) = L^{3/2} \sum_{i}^{K^3} \delta(\mathbf{x}_i) e^{-i\mathbf{k}\cdot\mathbf{x}}, \quad \mathbf{k} \in (n_x, n_y, n_z) k_F, \quad k_F = 2\pi/L$$

$$P(\mathbf{k}) = \text{Real} \left[\delta_A(\mathbf{k}) \delta_B^*(\mathbf{k}) \right]$$

- Cross-correlation between different tracers
 - To get an unbiased PS from the foreground residual
 - HI x Optical Galaxy Sample

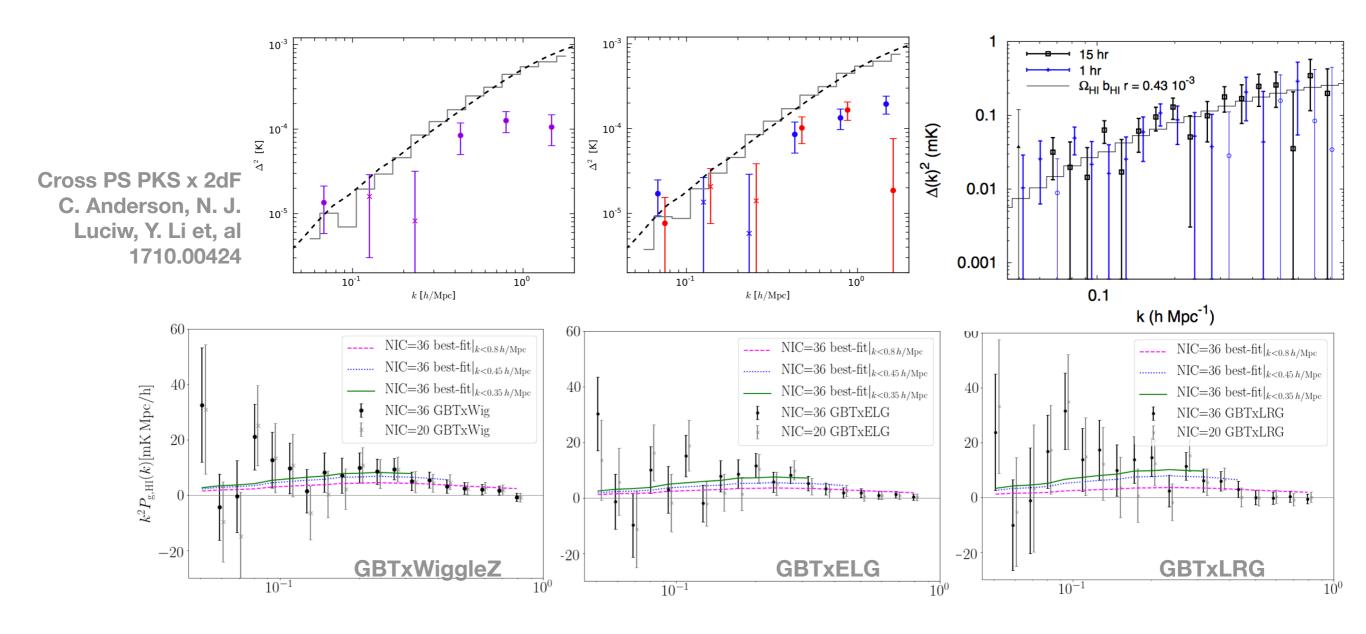


Cross-correlation function with GBT HIIM x DEEP2
T.-C. Chang et al. 2010 Nature Vol 466



Cross PS GBT HIIM x WiggleZ K. Masui et al 2013 ApJ 763L 20M

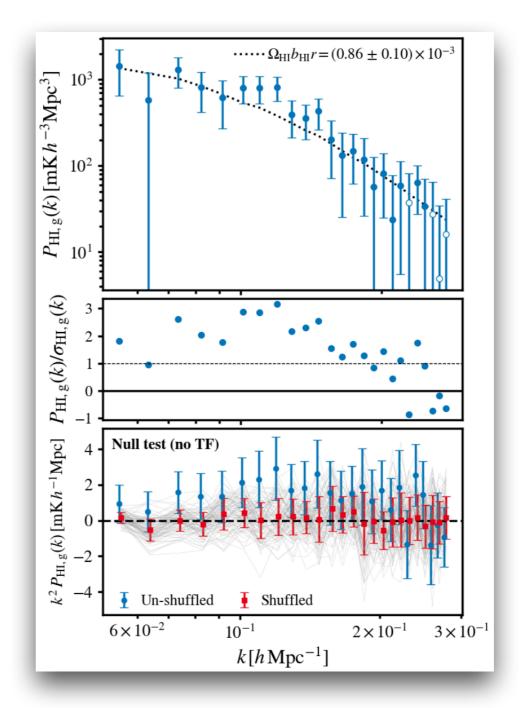
- Cross-correlation between different tracers
 - To get an unbiased PS from the foreground residual
 - HI x Optical Galaxy Sample



- Cross-correlation between different tracers
 - To get an unbiased PS from the foreground residual
 - HI x Optical Galaxy Sample

• 10.5 hour HIIM observation using MeerKAT 64 dishes, we achieve 7.7 detection of the cross-correlation power spectrum;

Cunnington S., Li Y., Santos M.~G., et al. arXiv: 2206.01579



- Cross-correlation between different tracers
 - To get an unbiased PS from the foreground residual
 - HI x Optical Galaxy Sample
- Cross-correlation between different observation epochs
 - To get an unbiased PS from the noise power spectrum
 - HI (Day 1) x HI (Day 2)
 - HI (FAST) x HI (MeerKAT)

$$\delta(\mathbf{k}) = L^{3/2} \sum_{i}^{K^3} \delta(\mathbf{x}_i) e^{-i\mathbf{k}\cdot\mathbf{x}}, \quad \mathbf{k} \in (n_x, n_y, n_z) k_F, \quad k_F = 2\pi/L$$

$$P(\mathbf{k}) = \text{Real}\left[\delta_A(\mathbf{k})\delta_B^*(\mathbf{k})\right]$$

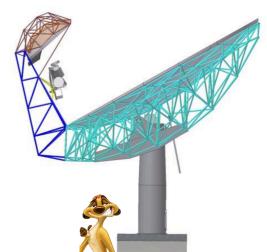
- Cross-correlation between different tracers
 - To get an unbiased PS from the foreground residual
 - HI x Optical Galaxy Sample
- Cross-correlation between different observation epochs
 - To get an unbiased PS from the noise power spectrum
 - HI (Day 1) x HI (Day 2)
 - HI (FAST) x HI (MeerKAT)
- The Error for Cross-correlation PS

$$\delta(\mathbf{k}) = L^{3/2} \sum_{i}^{K^3} \delta(\mathbf{x}_i) e^{-i\mathbf{k} \cdot \mathbf{x}}, \quad \mathbf{k} \in (n_x, n_y, n_z) k_F, \quad k_F = 2\pi/L$$

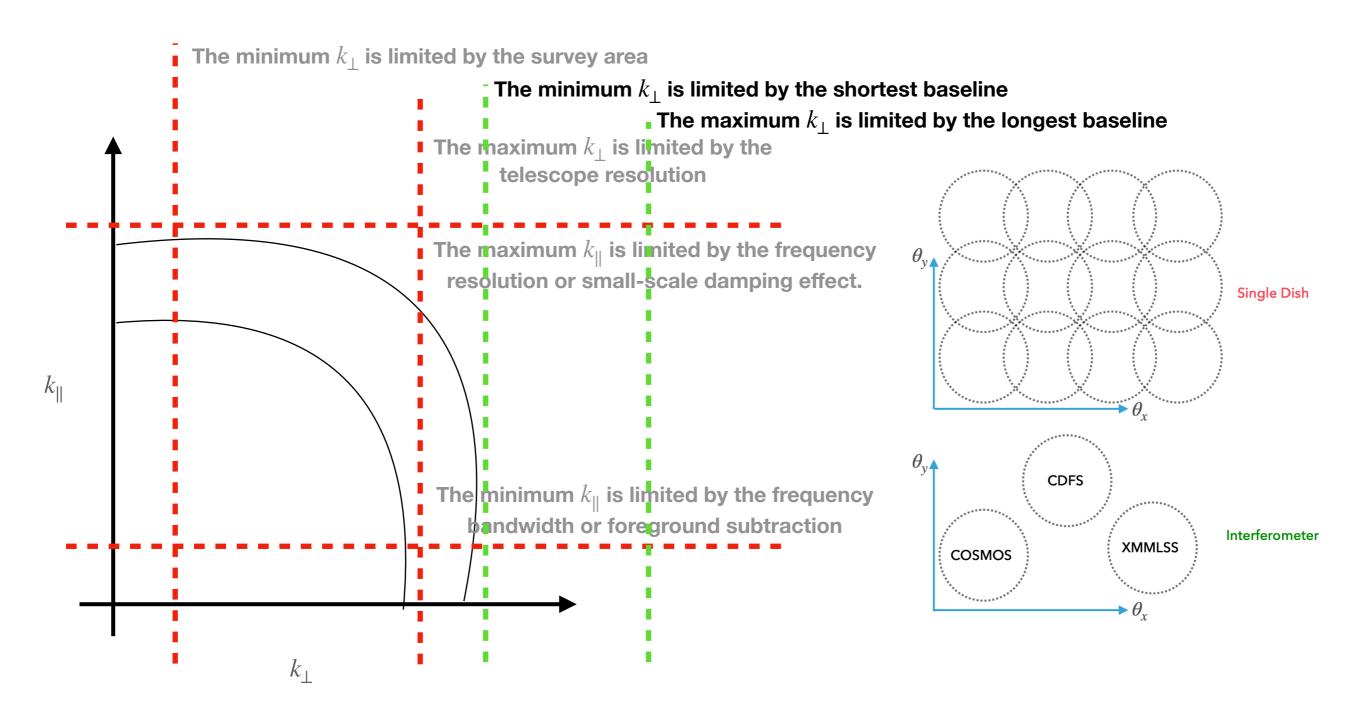
$$P(\mathbf{k}) = \text{Real}\left[\delta_A(\mathbf{k})\delta_B^*(\mathbf{k})\right]$$

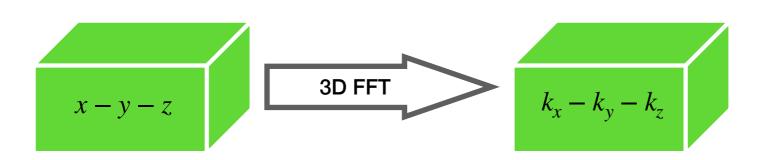
$$\left(\frac{\Delta P_{a}}{P_{a}}\right)^{2} = \left(\frac{1}{2}V_{\text{bin}}\int \frac{k^{2}d\mu dk}{(2\pi)^{2}} \frac{\left(P^{\text{HI,g}}\right)^{2}}{\left(P^{\text{HI,g}}\right)^{2} + \left(P^{\text{HI}}(k,\mu) + N(k,\mu)\right)\left(P^{\text{g}}(k,\mu) + \frac{1}{\bar{n}}\right)}\right)^{-1}$$

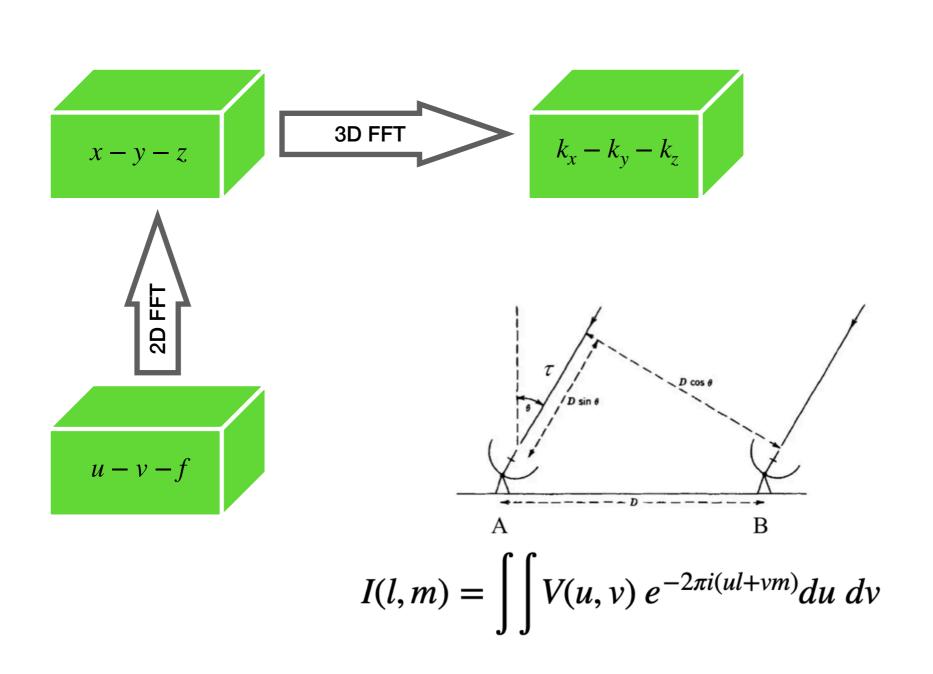
Single Dish v.s. Interferometer HI IM

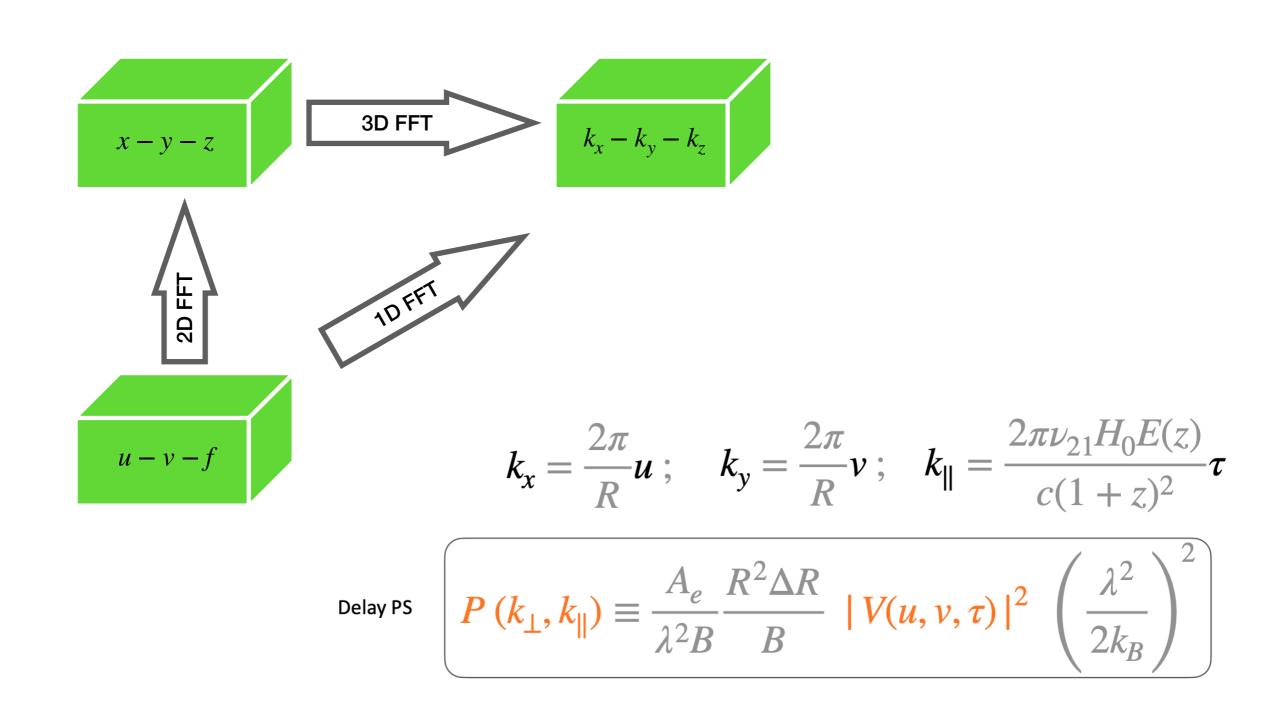


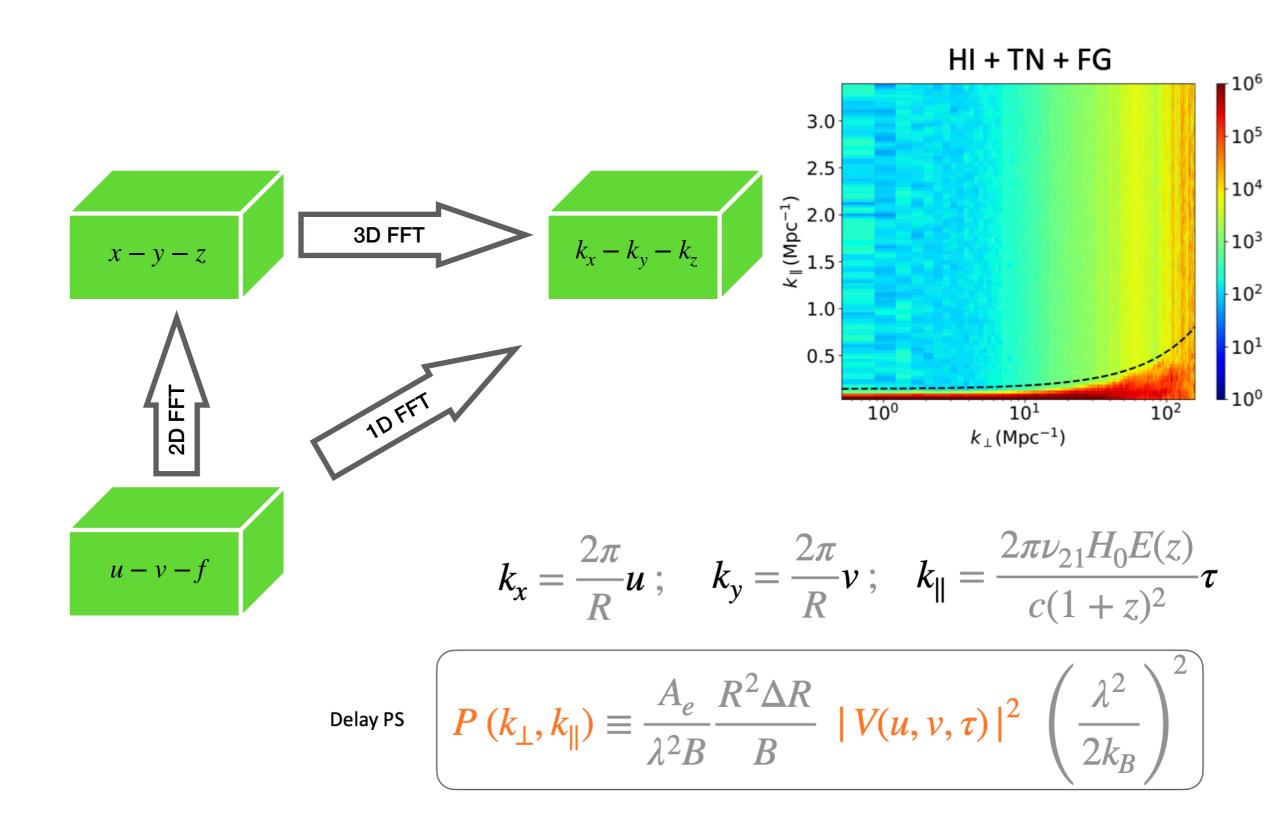
Single Dish v.s. Interferometer HI IM



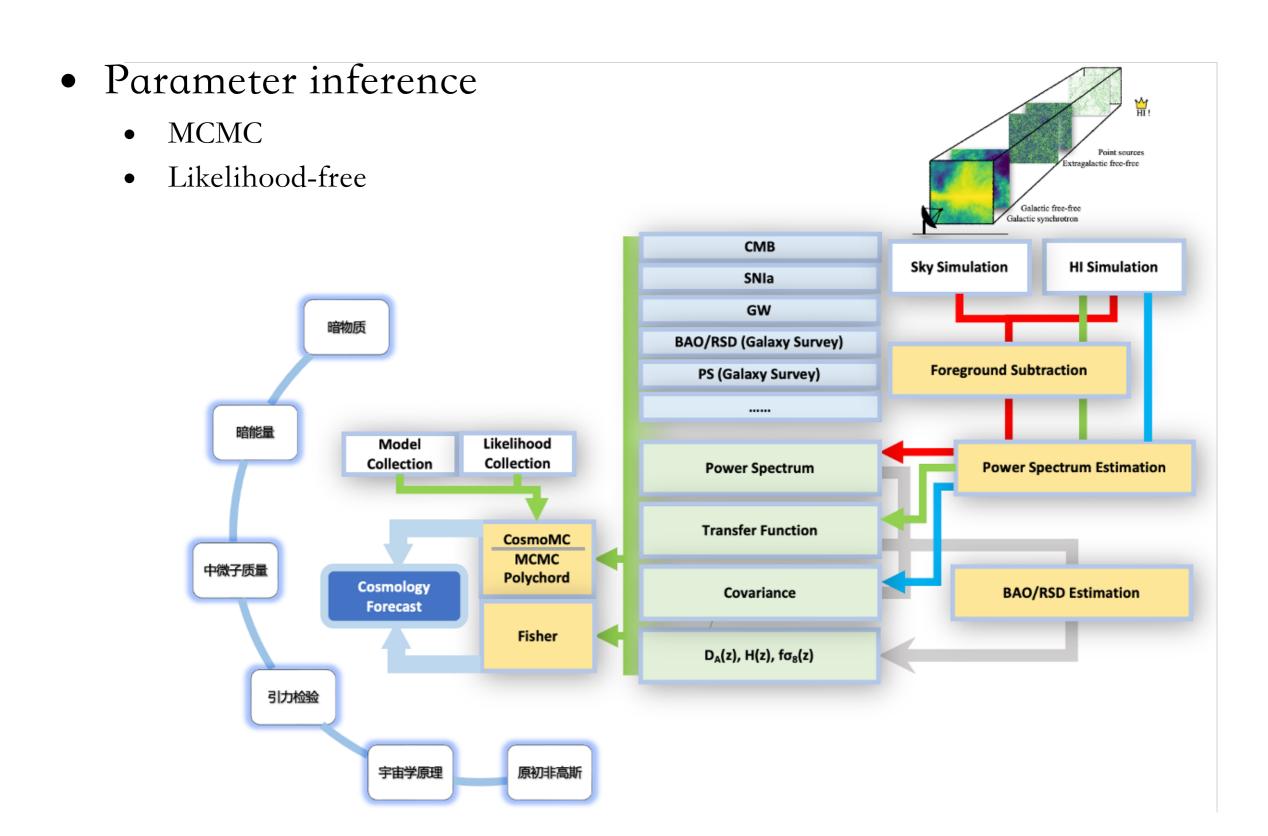








From measurements to cosmolgical models



- Powerspectrum Estimation Basic
 - Definition of correlation function
 - Definition of power spectrum
 - Relation between correlation function and power spectrum
- Galaxy Survey
 - Galaxy sample
 - Selection function
 - Window function
 - Error estimation
 - Correction of Alias Effects
- HI Intensity Mapping Survey
 - Fisher Information Matrix
 - FFT
 - Cross-correlation
 - Delay power spectrum

Many Thanks !!

The summer school for 21cm cosmology July 2nd - 15th, 2025 Xi'an, P. R. China

liyichao@mail.neu.edu.cn

Yichao LI (李毅超) from Northeastern University

