
The Large-Scale Structure 
Measurements
The summer school for 21cm cosmology 
July 2nd - 15th, 2025 Xi’an, P. R. China 

Yichao LI （李毅超） from Northeastern University



• A Brief Introduction to Large-Scale Structure 
• A pretty biased view from an observational astronomer 

• Powerspectrum Estimation Basic 
• Definition of correlation function 
• Definition of power spectrum 
• Relation between correlation function and power spectrum 

• Galaxy Survey 
• Galaxy sample 
• Selection function 
• Window function 
• Error estimation 
• Correction of Alias Effects 

• HI Intensity Mapping Survey 
• Fisher Information Matrix 
• FFT 
• Cross-correlation 
• Delay power spectrum
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The Expanding Universe
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The Expanding Universe

• The Standard Candle 
• The Standard Sirens
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The Expanding Universe

• The Standard Candle 
• The Standard Sirens 
• The Standard Pings
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The Expanding Universe

• The Standard Candle 
• The Standard Sirens 
• The Standard Pings 
• The Standard Ruler 

• The Baryon Acoustic Oscillation (BAO)
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The Baryon Acoustic Oscillation

http://galaxies-cosmology-2015.wikidot.com/baryon-acoustic-oscillations



The Baryon Acoustic Oscillation

http://galaxies-cosmology-2015.wikidot.com/baryon-acoustic-oscillations



Eisenstein D.~J., et al., 2005, ApJ, 633, 560. doi:10.1086/466512

dP12 = n̄2 (1 + ξ12(r)) dV1dV2

The Cosmic Large-Scale Structure

The Baryon Acoustic Oscillation



The Cosmic Large-Scale Structure
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The Two-point correlation function 

 ξ(r) = ⟨δ(x)δ(x + r)⟩
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The Cosmic Large-Scale Structure

dP12 = n̄2 (1 + ξ12(r)) dV1dV2
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The Two-point correlation function 

  

Transfer to Fourier space 

 

 

ξ(r) = ⟨δ(x)δ(x + r)⟩

δ(k) = ∫
d3x

(2π)3/2
δ(x)e−ik⋅x

⟨δ(k)δ(k′￼)⟩ = 2π2P(k)δD(k + k′￼)

ξ(r) = ⟨δ(x)δ(x + r)⟩ = ∫
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The Cosmic Large-Scale Structure
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The Two-point correlation function 

  

Transfer to Fourier space 

 

 

ξ(r) = ⟨δ(x)δ(x + r)⟩

δ(k) = ∫
d3x

(2π)3/2
δ(x)e−ik⋅x

⟨δ(k)δ(k′￼)⟩ = 2π2P(k)δD(k + k′￼)

ξ(r) = ⟨δ(x)δ(x + r)⟩ = ∫
dk
k

P(k)
sin(kr)

kr

Eisenstein D.~J., et al., 2005, 

ApJ, 633, 560. doi:10.1086/466512

BAO Wigglez



The Cosmic Large-Scale Structure

dP12 = n̄2 (1 + ξ12(r)) dV1dV2

The Two-point correlation function 

  ξ(r) = ⟨δ(x)δ(x + r)⟩

⟨δ(k)δ(k′￼)⟩ = 2π2P(k)δD(k + k′￼)

Why is the 2-point function (either the correlation 
function or the power spectrum) the statistic of 
choice in characterizing LSS?



The Cosmic Large-Scale Structure

dP12 = n̄2 (1 + ξ12(r)) dV1dV2

The Two-point correlation function 

  ξ(r) = ⟨δ(x)δ(x + r)⟩
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Why is the 2-point function (either the correlation 
function or the power spectrum) the statistic of 
choice in characterizing LSS?

The correlation function or power spectrum is 
the (co)variance of density, which is the lowest 
order irreducible moment after the mean. The 
central limit theorem implies that a density 
distribution is asymptotically Gaussian in the 
limit where the density results from the average 
of many independent random processes. A 
Gaussian is completely characterized by its 
mean and variance. 



The Cosmic Large-Scale Structure

dP12 = n̄2 (1 + ξ12(r)) dV1dV2

The Two-point correlation function 

  ξ(r) = ⟨δ(x)δ(x + r)⟩

⟨δ(k)δ(k′￼)⟩ = 2π2P(k)δD(k + k′￼)

Why is the 2-point function (either the correlation 
function or the power spectrum) the statistic of 
choice in characterizing LSS?

The correlation function or power spectrum is 
the (co)variance of density, which is the lowest 
order irreducible moment after the mean. The 
central limit theorem implies that a density 
distribution is asymptotically Gaussian in the 
limit where the density results from the average 
of many independent random processes. A 
Gaussian is completely characterized by its 
mean and variance. 

What is the advantage of the power spectrum over 
the correlation function? 



Heavy Elements 0.03% 
Neutrinos 0.3% 
Stars 0.5% 
H He 4%



LSS Galaxy Redshift Survey



Dark Energy 
Spectroscopic 
Instrument 



For cosmology studies, is it necessary to observe 
all the galaxies in the Universe? 



For cosmology studies, is it necessary to observe 
all the galaxies in the Universe?  

What kind of galaxies are ideal for cosmology? 



The Galaxy Sample

• Need to be a good sample of the underlying DM field 
• Need to have enough number density 
• Need to be distributed in large volumes  
• Need to be at a high redshift 

• Luminous Red Galaxies 
• Emission Line Galaxies 
• Quasars 



The Feldman-Kaiser-Peacock (1994) Method

• A galaxy survey samples only some fraction of the galaxies.  
• Galaxies are selected randomly from some continuous 

underlying field. 
• The Selection Function n̄(r)

  n̄(r) = n̄(z)Φ(θ, m)



The Feldman-Kaiser-Peacock (1994) Method

• A galaxy survey samples only some fraction of the galaxies.  
• Aalaxies are selected randomly from some continuous 

underlying field. 
• The Shot Noise
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The Feldman-Kaiser-Peacock (1994) Method

• With finite survey volume 
• Cosmic Variance

⟨δ(k)δ(k′￼)⟩ = 2π2P(k)δD(k + k′￼) +
1
n̄

(k + k′￼)

Shot Noise 

Wick’s theorem

Scott Dodelson & Fabian Schmidt  
Modon Cosmology 2021  

Chapter 14.4.2



The Feldman-Kaiser-Peacock (1994) Method

• With finite survey volume 
• Weighted overdensity
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The Feldman-Kaiser-Peacock (1994) Method

• With finite survey volume 
• Weighted overdensity
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The Feldman-Kaiser-Peacock (1994) Method

• With finite survey volume 
• Weighted overdensity 

• Inverse noise weight (FKP weight)
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W(r) =
1

P(k) + 1/n(r)
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The Feldman-Kaiser-Peacock (1994) Method

• With finite survey volume 
• Weighted overdensity 

• Inverse noise weight (FKP weight) 

• Estimation of Shot Noise
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The Feldman-Kaiser-Peacock (1994) Method

• With finite survey volume 
• Weighted overdensity 

• Inverse noise weight (FKP weight) 

• Estimation of Shot Noise 
• Via Simulated Mock Samples

 ⟨δ̃(k)δ̃*(k)⟩ = ∫ |W(k − k′￼) |2 P(k′￼)d3k′￼+ N(0)

W(r) =
1
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Shot Noise Estimation and Random Samples

• Estimation of Shot Noise 
• Via Simulated Random Samples 
• The random samples are supposed to have no LSS information 
• The random samples are supposed to have the same selection function  

• Generation of Random Samples 
• Using the known selection function 

n̄(r)

n̄(r)



The Feldman-Kaiser-Peacock (1994) Method

• Estimation of Shot Noise 
• Via Simulated Random Samples 
• The random samples are supposed to have no LSS information 
• The random samples are supposed to have the same selection function  

• Generation of Random Samples 
• Using the known selection function  
• Using the real catalog and resampling  

• such as shuffle the position of the galaxies in the real catalog

n̄(r)

n̄(r)



The Estimation of the Window Function

• Estimate the Window Function with Random Samples 
• Random Samples need to have a larger volume than real data

∫ |W(k − k′￼) |2 P(k′￼)d3k′￼= ⟨δ̃(k)δ̃*(k)⟩ − N(0)



The Estimation of the Errors

• Estimate the Error  
• With Random Samples 
• With Simulation (N-body or Semi-analytical) 
• With Mock Samples. 

• Different from the Random Sample, the Mock Sample takes the LSS 
information. 

• Gaussian field







δ̃(k) = A(k) + iB(k),

⟨A(k)2⟩ = ⟨B(k)2⟩ =
1
2

P(k),

δG(x) = ℱ−1[δ(k)],

Need to take care of the symmetry in the Fourier space to make 
sure a real number in the real (configureation) space



The Estimation of the Errors

• Estimate the Error  
• With Random Samples 
• With Simulation (N-body or Semi-analytical) 
• With Mock Samples. 

• Different from the Random Sample, the Mock Sample takes the LSS 
information. 

• Gaussian field 
• Log-normal field










δ̃(k) = A(k) + iB(k),

⟨A(k)2⟩ = ⟨B(k)2⟩ =
1
2

P(k),

δG(x) = ℱ−1[δ(k)],

ρ(x) = exp [δ(x) −
1
2

σ2] .



The Estimation of the Errors

• Estimate the Error  
• With Random Samples 
• With Simulation (N-body or Semi-analytical) 
• With Mock Samples. 

• Different from the Random Sample, the Mock Sample takes the LSS 
information. 

• Gaussian field 
• Log-normal field 
• Jackknife sample

CovJK(θa, θb) =
N − 1

N

N

∑
i=1

(θ(a)
i − θ̄(a)) (θ(b)

i − θ̄(b)),



Correct the Alias Effect

• The Alias Effect with Gridding the Galaxy Catalog 



Summary for Galaxy Survey PS Estimation

• Real catalog for PS estimation 
• Random catalog for shot noise and window function estimation 
• Mock catalog for error estimation 

• Gaussian field 
• Log-normal field 
• Jackknife sample 

• Correct the Alian Effects

 ⟨δ̃(k)δ̃*(k)⟩ = ∫ |W(k − k′￼) |2 P(k′￼)d3k′￼+ N(0)

W(r) =
1

P(k) + 1/n(r)

∫ |W(k − k′￼) |2 P(k′￼)d3k′￼= ⟨δ̃(k)δ̃*(k)⟩ − N(0)



Optical v.s. Radio

?“Using what was then known of the 
physics of atoms, what common 
element would produce a spectral 
line at radio wavelengths”



The HI 21cm Line
• The HI in the Milky Way

• Jan Oort 1932 measured the rotation of the Milky Way 

via stars in the optcial band
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The HI 21cm Line
• The HI in the Milky Way

• Hendrik van de Hulst 1944

?“Using what was then known of the 
physics of atoms, what common 
element would produce a spectral 
line at radio wavelengths”

• Hendrik van de Hulst 1944


• HI 21cm line

• 1420.406 MHz

• forbidden line

• 

• life time 11 million years

A = 2.87 × 10−15 s−1



The HI 21cm Line
• The HI in the Milky Way

• Even and Purcell at Harvard mad the discovery of 

Milky Way HI in 1951



The HI 21cm Line
• The HI in the Milky Way

• Mapping HI in the Milky Way. 

Oort, J. H., Kerr, F. J., and Westerhout, G., “The galactic system as a 
spiral nebula (Council Note)”, Monthly Notices of the Royal 
Astronomical Society, vol. 118, p. 379, 1958. doi:10.1093/mnras/
118.4.379.

Levine, E. S., Blitz, L., and Heiles, C., “The Spiral 
Structure of the Outer Milky Way in Hydrogen”, 
Science, vol. 312, no. 5781, pp. 1773–1777, 2006. 
doi:10.1126/science.1128455.



The HI 21cm Line
• The HI in the Milky Way

• Mapping HI in the Milky Way. 

HI4PI collaboration: HI4PI: A full-sky H i survey based on EBHIS and GASS 2016  arxiv:1610.06175



The HI 21cm Line
• HI in galaxies

Early Type Galaxy 
Old Galaxies

Late Type Galaxy 
Young Galaxies



The HI 21cm Line
• HI in IGM



Neutral Hydrogen (HI)

ALFALFA Survey

MeerKAT HI commissioning 
observations of MHONGOOSE 
galaxy ESO 302-G014

arXiv:2009.09766

• The HI astronomy



Neutral Hydrogen (HI)
• The HI astronomy

• The HI cosmology

Pritchard & Loeb 2012 Villaescusa-Navarro 2018



Neutral Hydrogen (HI)
• The HI astronomy

• The HI cosmology


• HI Galaxy survey

• ALFALFA

• HIJASS

• HIPASS

• VLA

• ASKAP/MeerKAT

Radio Telescope : Not able to resolve individual galaxy



Neutral Hydrogen (HI)
• The HI astronomy

• The HI cosmology


• HI Galaxy survey

• ALFALFA

• HIJASS

• HIPASS

• VLA

• ASKAP/MeerKAT


• HI Intensity Mapping



HI Intensity Mapping (IM)

Ansari et. al. 1108.1474

Galaxy Survey

Intensity  Mapping Survey

MeerKAT L-band
MeerKAT UHF-band



HI IM for cosmology
• Provide huge 

observation volume for 
cosmology studies 

• Multi redshifts

• Multi tracer


• Cosmological Large-scale structure (LSS)


• Baryon Acoustic Oscillation (BAO)


• Redshift space distortion (RSD)


• Dark Energy 


• Omega HI


• primordial non-Gaussianlity


• EoR

BAO, k ~ 0.074 Mpc^-1 
IM 10k hr,  25k deg^2, dz=0.1; 

inter.  1k deg^2, dz=0.3

Intensity  Mapping Survey

Galaxy Survey
Santos, M G et, al. ArXiv 1501.03989 



Forecast
The Fisher Information Matrix is given by 

Where  is the likelihood function.L = exp (−0.5χ2)



Forecast
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Forecast
̂P(kα) =

1
mk,α

||k|−kα|<Δk/2

∑
k

|δ(k) |2 , mk,α =
1
2

4πk2
αΔk

k3
F

=
1

4π2
Vk2

αΔk

Var [ ̂PHI(kα)] =
2

mk,α
(PHI(k) + PN)

χ2 = ∑
k

( ̂P(k) − Pth(k, {λα}))2

Var [ ̂P(k)]
= χ2(λ̄) + ℱ(λ − λ̄)2

ℱ =
1
2

∂2χ2

∂λ2 λ=λ̄
= ∑

k

1

Var [ ̂P(k)] ( ∂Pth(k)
∂λ )

2

+ (Pth(k) − ̂P(k)) ∂2Pth(k)
∂λ2

Fαβ = ∑
k

1

Var [ ̂P(k)] (( ∂Pth(k)
∂λα ) ( ∂Pth(k)

∂λβ ))



Forecast
̂P(kα) =

1
mk,α

||k|−kα|<Δk/2

∑
k

|δ(k) |2 , mk,α =
1
2

4πk2
αΔk

k3
F

=
1

4π2
Vk2

αΔk

Var [ ̂PHI(kα)] =
2

mk,α
(PHI(k) + PN)

Fαβ = ∑
k

1

Var [ ̂P(k)] (( ∂Pth(k)
∂λα ) ( ∂Pth(k)

∂λβ ))

( ΔPa

Pa )
2

=
1
2

Vbin ∫
k2d μ d k

(2π)2 ( PHI(k, μ)
PHI(k, μ) + N(k, μ) )

2
−1



Bull P. et al 2015, ApJ, 803, 21. 

arXiv: 1405.1452

GBT 
Parkes

MeerKAT 
ASKAP

Tianlai 
CHIME 
BINGO

SKA 
Full Tianlai 
Full CHIME

• Late-time cosmology with 21 cm intensity 
mapping experiments

( ΔPa

Pa )
2

=
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2

Vbin ∫
k2d μ d k

(2π)2 ( PHI(k, μ)
PHI(k, μ) + N(k, μ) )
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• 10.5 hour HI IM observation using MeerKAT 
64 dishes, we achieve  detection of the 
cross-correlation power spectrum;

7.7σ

Cunnington S., Li Y., Santos M.~G., et al. 

arXiv: 2206.01579

Bull P. et al 2015, ApJ, 803, 21. 

arXiv: 1405.1452

GBT 
Parkes

MeerKAT 
ASKAP

Tianlai 
CHIME 
BINGO

SKA 
Full Tianlai 
Full CHIME

• Late-time cosmology with 21 cm intensity 
mapping experiments



The Foreground

Galactic synchrotron
Galactic free-free

Extragalactic free-free
Point sources

HI !



The Foreground
The secret to successfully recovering the underlying HI fluctuation  

is to correctly remove the bright foreground contamination.

Galactic synchrotron
Galactic free-free

Extragalactic free-free
Point sources

HI !



FG Subtraction
• Model dependent foreground subtraction method

• Logarithmic polynomial fitting

discarded. In other words, when we talk about the contamina-
tion from point sources below, we refer only to the contribution
from unresolved point sources. To avoid having to generate in-
finitely many point sources, we also truncated the distribution
at a minimum flux Smin ¼ 10"3 mJy, since we find that the total
flux contribution has converged by then.We generate!i, the spec-
tral index of the ith point source, randomly from the Gaussian
distribution

f (!) ¼ 1ffiffiffiffiffiffiffiffiffi
(2")

p
#!

exp " (! " !0)
2

2#2
!

" #
; ð15Þ

with the spectral index ! in the range of ½!0 "!!;!0 þ!!',
where !! ¼ 5#! . To be conservative, we allow the spectral
index to vary in a fairly large region, #! ¼ 10, through our
calculations.

3.2.4. Detector Noise

We treat detector noise as white noise. In the Rayleigh-Jeans
limit, the rms detector noise in a pixel can be approximated as

#T ¼ k2

2kB
B ¼ k2

2kB

S

A
; ð16Þ

where kB is the Boltzmann constant and k is the redshifted
wavelength of 21 cm emission. The specific brightness B is
related to the point-source sensitivity S by dividing it with the
pixel area A.

At redshift 8.47, $ ¼ 150 MHz, k ¼ 2m, with the LOFAR
virtual core configuration,6 for a 5A2 pixel with 4MHz bandpass
and 1 hr integration, the sensitivity S is approximately 0.17mJy,
and from equation (16) we get

#LOFAR
T ¼ 108 mKð Þ 4 MHz

!$

$ %0:5 1 hr

t

$ %0:5
; ð17Þ

where!$ is the channel width and t is the total integration time.
Similarly, for the MWA experiment,7 a 4A6 pixel with 32 MHz
bandpass and 1 hr integration has a point-source sensitivity of
S ¼ 0:27 mJy, so we get the MWA detector noise of

#MWA
T ¼ 218 mKð Þ 32 MHz

!$

$ %0:5 1 hr

t

$ %0:5
: ð18Þ

We should mention that although at 4 MHz bandwidth, the
sensitivity for MWA is worse than that for LOFAR, MWA has a
larger bandpass and field of view. This larger field of view leads
to vastly more pixels, which is an advantage for foreground re-
moval, as we will see in later sections. The detector thermal noise
is only one of the many concerns in the experiment, such as
calibration, systematics, etc. Thus, it should not be considered
as the only criterion to judge an experiment.

The 1D power spectrum of the detector noise can then be
written as

Pdet ¼ 2"#2
T : ð19Þ

In our simulation, we consider two scenarios. One scenario as-
sumes a fiducial future experimentwithGaussian randomdetector
noise down to the #T ¼ 1mK level. The other scenario assumes
a currently achievable detector noise level of(200 mK. This is

based on equations (17) and (18) for the LOFAR and MWA
experiments, assuming 1000 hr of integration time and 4Y8 kHz
frequency resolutions, respectively.

4. RESULTS

As we showed previously in Figure 2, the signal wiggles
rapidly with frequency. This is the key advantage of removing
foregrounds in frequency space, since foregrounds are typically
relatively smooth functions of frequency.

We simulate the 21 cm signal as a Gaussian random field,
although in reality, the signal is of course highly non-Gaussian.
We make this Gaussianity approximation for simplicity, since
the key quantity that we are interested in (the power spectra of
the residual noise and foregrounds) depends mainly on the power
spectra of the signal, foregrounds, and noise, not on whether the
statistics are Gaussian or not.

4.1. Baseline Example 1: Long-Term Potential
(NoiseT Signal )

The results for the baseline example with noise much smaller
than the signal are shown in Figure 3. The top panel shows the
total contaminant in a pixel, including Galactic synchrotron ra-
diation, Galactic free-free emission, extragalactic point sources,
and detector noise with # ¼ 1 mK, which is the fiducial value
for a future-generation experiment. The foregrounds are modeled
as in the previous section, with parameters (given in the figure
caption) corresponding to a rather pessimistic assumption about
the foreground properties.

6 See http://www.lofar.org.
7 See http://web.haystack.mit.edu/MWA/MWA.html.

Fig. 3.—Spectrum in a single pixel before and after foreground cleaning. The
top panel shows the total contaminant signal, consisting of synchrotron radia-
tion (Asyn ¼ 335:4 K, !syn ¼ 2:8,!!syn ¼ 0:1), free-free emission foreground
(AA ¼ 33:5 K, !A ¼ 2:15,!!A ¼ 0:01), extragalactic point sources (#! ¼ 10),
and detector noise (# ¼ 1 mK). The middle panel has the cosmological 21 cm
signal added. The bottom panel shows the recovered 21 cm signal (dashed curve)
compared with the true simulated signal (solid curve) and the residual (recovered
minus simulated 21 cm signal; gray curve). The three horizontal black dashed lines
correspond to "0.004, 0, and 0.004 K, respectively. (Note the different vertical
axis limits.) The small-scale wiggles in the residual represent detector noise,
whereas the smoothed parabola-shaped component of the residual indicates the
error in the foreground fitting. [See the electronic edition of the Journal for a
color version of this figure.]
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Wang, X., et. al (2006). ApJ, 650(2), 529–537. 
Alonso, D. et al. (2014) MNRAS 444, 3183
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discarded. In other words, when we talk about the contamina-
tion from point sources below, we refer only to the contribution
from unresolved point sources. To avoid having to generate in-
finitely many point sources, we also truncated the distribution
at a minimum flux Smin ¼ 10"3 mJy, since we find that the total
flux contribution has converged by then.We generate!i, the spec-
tral index of the ith point source, randomly from the Gaussian
distribution
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#!

exp " (! " !0)
2

2#2
!

" #
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with the spectral index ! in the range of ½!0 "!!;!0 þ!!',
where !! ¼ 5#! . To be conservative, we allow the spectral
index to vary in a fairly large region, #! ¼ 10, through our
calculations.

3.2.4. Detector Noise

We treat detector noise as white noise. In the Rayleigh-Jeans
limit, the rms detector noise in a pixel can be approximated as

#T ¼ k2

2kB
B ¼ k2

2kB

S

A
; ð16Þ

where kB is the Boltzmann constant and k is the redshifted
wavelength of 21 cm emission. The specific brightness B is
related to the point-source sensitivity S by dividing it with the
pixel area A.

At redshift 8.47, $ ¼ 150 MHz, k ¼ 2m, with the LOFAR
virtual core configuration,6 for a 5A2 pixel with 4MHz bandpass
and 1 hr integration, the sensitivity S is approximately 0.17mJy,
and from equation (16) we get

#LOFAR
T ¼ 108 mKð Þ 4 MHz

!$

$ %0:5 1 hr

t

$ %0:5
; ð17Þ

where!$ is the channel width and t is the total integration time.
Similarly, for the MWA experiment,7 a 4A6 pixel with 32 MHz
bandpass and 1 hr integration has a point-source sensitivity of
S ¼ 0:27 mJy, so we get the MWA detector noise of

#MWA
T ¼ 218 mKð Þ 32 MHz

!$

$ %0:5 1 hr

t

$ %0:5
: ð18Þ

We should mention that although at 4 MHz bandwidth, the
sensitivity for MWA is worse than that for LOFAR, MWA has a
larger bandpass and field of view. This larger field of view leads
to vastly more pixels, which is an advantage for foreground re-
moval, as we will see in later sections. The detector thermal noise
is only one of the many concerns in the experiment, such as
calibration, systematics, etc. Thus, it should not be considered
as the only criterion to judge an experiment.

The 1D power spectrum of the detector noise can then be
written as

Pdet ¼ 2"#2
T : ð19Þ

In our simulation, we consider two scenarios. One scenario as-
sumes a fiducial future experimentwithGaussian randomdetector
noise down to the #T ¼ 1mK level. The other scenario assumes
a currently achievable detector noise level of(200 mK. This is

based on equations (17) and (18) for the LOFAR and MWA
experiments, assuming 1000 hr of integration time and 4Y8 kHz
frequency resolutions, respectively.

4. RESULTS

As we showed previously in Figure 2, the signal wiggles
rapidly with frequency. This is the key advantage of removing
foregrounds in frequency space, since foregrounds are typically
relatively smooth functions of frequency.

We simulate the 21 cm signal as a Gaussian random field,
although in reality, the signal is of course highly non-Gaussian.
We make this Gaussianity approximation for simplicity, since
the key quantity that we are interested in (the power spectra of
the residual noise and foregrounds) depends mainly on the power
spectra of the signal, foregrounds, and noise, not on whether the
statistics are Gaussian or not.

4.1. Baseline Example 1: Long-Term Potential
(NoiseT Signal )

The results for the baseline example with noise much smaller
than the signal are shown in Figure 3. The top panel shows the
total contaminant in a pixel, including Galactic synchrotron ra-
diation, Galactic free-free emission, extragalactic point sources,
and detector noise with # ¼ 1 mK, which is the fiducial value
for a future-generation experiment. The foregrounds are modeled
as in the previous section, with parameters (given in the figure
caption) corresponding to a rather pessimistic assumption about
the foreground properties.

6 See http://www.lofar.org.
7 See http://web.haystack.mit.edu/MWA/MWA.html.

Fig. 3.—Spectrum in a single pixel before and after foreground cleaning. The
top panel shows the total contaminant signal, consisting of synchrotron radia-
tion (Asyn ¼ 335:4 K, !syn ¼ 2:8,!!syn ¼ 0:1), free-free emission foreground
(AA ¼ 33:5 K, !A ¼ 2:15,!!A ¼ 0:01), extragalactic point sources (#! ¼ 10),
and detector noise (# ¼ 1 mK). The middle panel has the cosmological 21 cm
signal added. The bottom panel shows the recovered 21 cm signal (dashed curve)
compared with the true simulated signal (solid curve) and the residual (recovered
minus simulated 21 cm signal; gray curve). The three horizontal black dashed lines
correspond to "0.004, 0, and 0.004 K, respectively. (Note the different vertical
axis limits.) The small-scale wiggles in the residual represent detector noise,
whereas the smoothed parabola-shaped component of the residual indicates the
error in the foreground fitting. [See the electronic edition of the Journal for a
color version of this figure.]

21 cm TOMOGRAPHY WITH FOREGROUNDS 533No. 2, 2006

Wang, X., et. al (2006). ApJ, 650(2), 529–537. 
Alonso, D. et al. (2014) MNRAS 444, 3183

Model dependent method failed when there is systematic effect. 



FG Subtraction

Assume that FG is strongly correlated across frequency 

 Cij =
1
N ∑

p

m(νi, np)m(νj, np)

CV = CΛ

• Model independent foreground subtraction method

• Principle Component Analysis (PCA)

Cross-correlation function with GBT HIIM x DEEP2 
T.-C. Chang et al. 2010 Nature Vol 466

Cross PS GBT HIIM x WiggleZ 
K. Masui et al 2013 ApJ 763L 20M

Cross PS PKS x 2dF  
C. Anderson, N. J. Luciw, Y. Li et, al 2018, MNRAS, 476, 3382.

GBT Auto PS 
Switzer E.~R., et al., 2013, MNRAS, 434, L46.

Cross PS MeerKAT x WiggleZ 
Cunnington S., Li Y., Santos M.~G., arXiv: 2206.01579



MeerKAT HI IM

Cross PS MeerKAT x WiggleZ 
Cunnington S., Li Y., Santos M.~G., arXiv: 2206.01579
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Power Spectrum Estimation with HI IM

• The noise inverse weight
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• The noise inverse weight

 

               

⟨δ̃(k)δ̃*(k)⟩ = ∫ |W(k − k′￼) |2 P(k′￼)d3k′￼+ N(0)

W(r) =
1
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∫ |W(k − k′￼) |2 P(k′￼)d3k′￼= ⟨δ̃(k)δ̃*(k)⟩ − N(0)

L. Wolz et al. MNRAS 470, 3220–3226 (2017)



Power Spectrum Estimation with HI IM

• The noise inverse weight
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W(r) =
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Power Spectrum Estimation with HI IM

• The HI IM maps 
• Zero-mean (pre-whitened)



• Fourier transform vs Fast Fourier Transform (FFT)

L

 grid pointsK3
δ(xi)

δ(k)

−
K
2
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K
2

kF

δ(k) = L3/2
K3

∑
i

δ(xi)e−ik⋅x, k ∈ (nx, ny, nz)kF, kF = 2π/L

Power Spectrum Estimation with HI IM

δ(k) = ∫
d3x

(2π)3/2
δ(x)e−ik⋅x
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• Map to Cube 

• Nearest-Grid-Point (NGP) 
• Clouds-in-cell (CIC)
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• Clouds-in-cell (CIC) 

• FFT

FFT

 

 

δ(k) = L3/2
K3

∑
i

δ(xi)e−ik⋅x, k ∈ (nx, ny, nz)kF, kF = 2π/L

P(k) = Real [δ(k)δ*(k)]

P(k⊥, k∥) =
1

Nm ∑
kx,ky

P(kx, ky, kz)

kx − ky − kzx − y − z

k⊥

k∥
3D-2D



Power Spectrum Estimation with HI IM

k⊥

k∥

• The HI IM maps 
• Map to Cube 

• Nearest-Grid-Point (NGP) 
• Clouds-in-cell (CIC) 

• FFT



Power Spectrum Estimation with HI IM

k⊥

k∥

The minimum  is limited by the survey areak⊥

• The HI IM maps 
• Map to Cube 

• Nearest-Grid-Point (NGP) 
• Clouds-in-cell (CIC) 

• FFT



Power Spectrum Estimation with HI IM

k⊥

k∥

The minimum  is limited by the survey areak⊥

• The HI IM maps 
• Map to Cube 

• Nearest-Grid-Point (NGP) 
• Clouds-in-cell (CIC) 

• FFT



Power Spectrum Estimation with HI IM

k⊥

k∥

The minimum  is limited by the survey areak⊥

The maximum  is limited by the 
telescope resolution

k⊥

• The HI IM maps 
• Map to Cube 

• Nearest-Grid-Point (NGP) 
• Clouds-in-cell (CIC) 

• FFT



Power Spectrum Estimation with HI IM

k⊥

k∥

The minimum  is limited by the survey areak⊥

The maximum  is limited by the 
telescope resolution

k⊥

• The HI IM maps 
• Map to Cube 

• Nearest-Grid-Point (NGP) 
• Clouds-in-cell (CIC) 

• FFT



Power Spectrum Estimation with HI IM

k⊥

k∥

The minimum  is limited by the survey areak⊥

The maximum  is limited by the 
telescope resolution

k⊥

The maximum  is limited by the frequency 
resolution or small-scale damping effect.

k∥

• The HI IM maps 
• Map to Cube 

• Nearest-Grid-Point (NGP) 
• Clouds-in-cell (CIC) 

• FFT



Power Spectrum Estimation with HI IM

k⊥

k∥

The minimum  is limited by the survey areak⊥

The maximum  is limited by the 
telescope resolution

k⊥

The maximum  is limited by the frequency 
resolution or small-scale damping effect.

k∥

• The HI IM maps 
• Map to Cube 

• Nearest-Grid-Point (NGP) 
• Clouds-in-cell (CIC) 

• FFT



Power Spectrum Estimation with HI IM

k⊥

k∥

The minimum  is limited by the survey areak⊥

The maximum  is limited by the 
telescope resolution

k⊥

The maximum  is limited by the frequency 
resolution or small-scale damping effect.

k∥

The minimum  is limited by the frequency 
bandwidth or foreground subtraction

k∥

• The HI IM maps 
• Map to Cube 

• Nearest-Grid-Point (NGP) 
• Clouds-in-cell (CIC) 

• FFT



Power Spectrum Estimation with HI IM

k⊥

k∥

The minimum  is limited by the survey areak⊥

The maximum  is limited by the 
telescope resolution

k⊥

The maximum  is limited by the frequency 
resolution or small-scale damping effect.

k∥

The minimum  is limited by the frequency 
bandwidth or foreground subtraction

k∥

Single Dish HI IM Survey

• The HI IM maps 
• Map to Cube 

• Nearest-Grid-Point (NGP) 
• Clouds-in-cell (CIC) 

• FFT



Cross-correlation Power Spectrum

• Cross-correlation between different tracers  
• To get an unbiased PS from the foreground residual 
• HI x Optical Galaxy Sample

 δ(k) = L3/2
K3

∑
i

δ(xi)e−ik⋅x, k ∈ (nx, ny, nz)kF, kF = 2π/L

P(k) = Real [δA(k)δ*B (k)]



Cross-correlation Power Spectrum

• Cross-correlation between different tracers  
• To get an unbiased PS from the foreground residual 
• HI x Optical Galaxy Sample

Cross-correlation function with GBT HIIM x DEEP2 
T.-C. Chang et al. 2010 Nature Vol 466

Cross PS GBT HIIM x WiggleZ K. Masui et al 2013 ApJ 763L 20M



Cross-correlation Power Spectrum

• Cross-correlation between different tracers  
• To get an unbiased PS from the foreground residual 
• HI x Optical Galaxy Sample

GBTxWiggleZ GBTxELG GBTxLRG

Cross PS PKS x 2dF  
C. Anderson, N. J. 

Luciw, Y. Li et, al 
1710.00424 



Cross-correlation Power Spectrum

• Cross-correlation between different tracers  
• To get an unbiased PS from the foreground residual 
• HI x Optical Galaxy Sample

• 10.5 hour HI IM observation using MeerKAT 
64 dishes, we achieve  detection of the 
cross-correlation power spectrum;

7.7σ

Cunnington S., Li Y., Santos M.~G., et al. 

arXiv: 2206.01579



Cross-correlation Power Spectrum

• Cross-correlation between different tracers  
• To get an unbiased PS from the foreground residual 
• HI x Optical Galaxy Sample 

• Cross-correlation between different observation epochs 
• To get an unbiased PS from the noise power spectrum 
• HI (Day 1) x HI (Day 2) 
• HI (FAST) x HI (MeerKAT)
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Cross-correlation Power Spectrum

• Cross-correlation between different tracers  
• To get an unbiased PS from the foreground residual 
• HI x Optical Galaxy Sample 

• Cross-correlation between different observation epochs 
• To get an unbiased PS from the noise power spectrum 
• HI (Day 1) x HI (Day 2) 
• HI (FAST) x HI (MeerKAT) 

• The Error for Cross-correlation PS
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Single Dish v.s. Interferometer HI IM

Tianlai (天籁)
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Single Dish v.s. Interferometer HI IM
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telescope resolution
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resolution or small-scale damping effect.
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The minimum  is limited by the frequency 
bandwidth or foreground subtraction
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The minimum  is limited by the shortest baselinek⊥
The maximum  is limited by the longest baselinek⊥
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From measurements to cosmolgical models

• Parameter inference 
• MCMC 
• Likelihood-free



• Powerspectrum Estimation Basic 
• Definition of correlation function 
• Definition of power spectrum 
• Relation between correlation function and power spectrum 

• Galaxy Survey 
• Galaxy sample 
• Selection function 
• Window function 
• Error estimation 
• Correction of Alias Effects 

• HI Intensity Mapping Survey 
• Fisher Information Matrix 
• FFT 
• Cross-correlation 
• Delay power spectrum
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