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SCIENCE IS ABOUT DECISION

=star vs galaxy ?
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ASTRONOMERS CANNOT AVOID STATISTICS

=Data Error (range):

ow can data be used best? Or at all?

= Correlation, testing the hypothesis, model fitting;

how do we proceed?

=Incomplete samples:
=samples from an experiment cannot be re-run

(cosmology)

=upper limits

= We must decide:
= The decision process need some methodology

=no matter how good the experiment.



BAYESIAN VS. FREQUENTIST

o

A

Thomas Bayes

(1702-1761)

What’s probability?
How to handle uncertainty?

How to incorporate prior knowledge?  Jerzy Neyman, Egon
Pearson and RonalélO

Fischer.



FREQUENTISTS

= Consider experiments with a random component.

= Probabilities: the relative frequency of an event, A, is
defined as

# of outcomes consistent with A

P(A) =
(4) # of experiments
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FREQUENTISTS

= This definition restricts the things we can add probabilities to:

= What is the probability of there being life on Mars 100 billion
years ago?

= not a repeatable experiment

= Assumption: there is an unknown but fixed underlying
parameter, 8, for a population (e.qg., the mean height of men).

= Random variation:
= environmental factors, measurement errors, ...




THE META-EXPERIMENT IDEA

= meta-experiments: consider the current dataset as a single
realization from all possible datasets.
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THE META-EXPERIMENT IDEA

= for example: a population mean is real but unknown, and
unknowable

= can only be estimated from the data.

= from the distribution for the sample mean, constructs a
confidence interval, centered at the sample mean.

= Regardless of the location of true mean;

= Can’t say there’s a 95% probability that the true mean is in this
interval, because it’s either already in, or it’s not.

= the true mean is a fixed value, which doesn’t have a
distribution.

= The sample mean does have a distribution!

= “95% of similar intervals would contain the true mean if each
interval were constructed from a different random sample like
this one.”




BAYESIANS

= A numerical formalization of our degree of belief:
= personal belief — the prior:
= No fixed values for parameters but a distribution.
= All distributions are subjective: Yours is as good as mine

= Treat the parameters (e.qg. mean) as random var.
= mean : the mean of my distribution

= Only the data are real.:
= The population mean is an abstraction
= Exist only conceptually

= some values are more believable than others based
on the data and their prior beliefs.




BAYESIANS

= Credibility interval.:

= Posterior: centered near the sample mean, tempered by

“prior”.

= Bayesian can say what the frequentist cannot:
= “There is a 95% probability (degree of believability) that

this interval contains the mean.”

Advantages

Disadvantages

Frequentist

Bayesian

Objective

Calculations

Credibility intervals
(usually the desired)
Complex models

Confidence intervals
(not quite the desi-
red)

Subjective

Calculations



IN SUMMARY

= A frequentist is a person whose long-run ambition is to
be wrong 5% of the time.

= A Bayesian is one who, vaguely expecting a horse, and
catching a glimpse of a donkey, strongly believes he has
seen a mule.

A frequentist uses impeccable logic to answer the
wrong question, while a Bayesian answers the right
question by making assumptions that nobody can fully
believe in.

P. G. Hamer



EXAMPLE

= Before 1987, 4 supernovae had been recorded in 10
centuries. What, before 1987, was the probability of a bright
supernova happening in the 20th century?

= Three possible answers:

= Probability is meaningless in this context.

= Supernovae are physically determined events, not random.

= From this God’s-eye viewpoint, probability is indeed meaningless; ‘God does
not play dice...’

= Frequentist: our best estimate of the probability is 4/10, although it is

obviously not very well determined.

= Bayesian: a-priori assignment:

= Modeling: stellar mass function, stellar birth rate, metallicity etc.
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PROBABILITY
= Measure of belief (Cox, | 946):

= A B and C are three events

= wish to have some measure of how strongly we think each is
likely to happen

= apply the rule: if A is more likely than B, and B is more likely
than C, then A is more likely than C.

= Axioms of probability (Kolmogorov)

= any random event A has a probability P(A) between 0 and I;

= the sure event has P(A) = 1;

= If A and B are exclusive events, then P(A or B) = P(A4) +
P(B),



CONDITIONALITY AND INDEPENDENCE

= Two events A and B are said to be independent:
P(Aand B) = P(A)P(B)

= Probability of one is unaffected by what we may know about the
other.

= conditional probability:

P(A and B)

P(A|B) = P B

= Marginalization:

P(4) = ) P(AIB)P(B)

= To get rid of these ‘nuisance parameters’ B;.




BAYES" THEOREM

= Bayes’ theorem:

_ P(A|B)P(B)
P(B|A) =— D
= Particularly, 6 is theory, d is data:
P(d|6)P(6)

= posterior probability: P(0|d)
= prior probability: P (68), state of belief before the experiment
= Likelihood function: P(d|@) = L(6), L(d|8)

= normalizing factor: P(d)




EXAMPLE

= There are N red balls and M blue balls in a jar,and N +
M = 10.We draw T = 3 times (putting the balls back after
drawing them) and R = 2 red balls. How many red balls
are there in the jar?

= Model (hypothesis) probability of red ball: N/(N + M)
= The likelihood (probability of getting R red balls):

(;1?1) (N ZM)R (N TM)T_R

= Prior (uncertain):
= uniformly likely between 0 and N + M




EXAMPLE

Probability
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True number of red balls

The probability distribution of the number of red balls, for five
drawings (solid curve) and 50 drawings (dashed curve).



BINOMIAL DISTRIBUTION

= 2 outcomes: ‘success’ or failure’:
= each successive trials are independent, with probability p

= the chance of n successes in N trials:
— N n _ N—n
P(n) = ()" (1= p)

= The mean:
N

2 nP(n) = Np

n=0

= The variance (mean square value):
N

> (= Np)?P(n) = Np(1 - p)
n=0



EXAMPLE

= Before 1987, 4 supernovae had been recorded in |0 centuries.

What, before 1987, was the probability of a bright supernova
happening in the 20th century?

= Define supernova rate per century p, posterior:

P(pldata) « (140) p*(1 — p)°x (prior on p)

= Take prior to be uniform, and normalize:
1
j P(p|data)dp = 1
0

= for n supernovae in m centuries, the distribution is:
P(p|data) = p"(1 —p)™ "™/B[n+1,m—n+ 1]

= Here B[n, m] is beta function.



EXAMPLE
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Number of supernovae per century

The posterior probability distribution for p, given that we have four supernovae in 10
centuries.
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POISSON DISTRIBUTION

= derives from the binomial in the limiting case of very rare
(independent) events and a large number of trials:

= Binomial: p — 0, Np — u = finite value.

= The probability of n events in a given interval, with the expectation of

U events in the same interval

n
P(n) = 'u_ e_ﬂ
n!

= The variance of the Poisson distribution is also p.
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EXAMPLE

= Poisson statistics govern the number of photons arriving
during an integration.

= The probability of a photon arriving in a fixed interval of
time is (often) small. The arrivals of successive photons are
independent.

= Integration over time t of photons arriving at a rate A.

= Mean photons:
u=At

= the fluctuation on this number will be

0 = Vi



EXAMPLE

= In large-scale structure, the galaxy distribution is discrete;

= In a voxel of volume V,(N) average galaxies;
= The variance o = (N) = nV;

= “shot noise” contribution of the galaxy distribution: 1/n

Il l——————————— .
08 Tooet L os) .
3 T Y SRR
Yy + . . ood Y .
04t oL c -l 04},

0.2 u“..' K - ., * e 02}

O . * K . . P 0 " * i . PSP 9
0 02 04 06 08 1 0 02 04 06 08 1
(a) b (b) X




PROBABILITY DENSITY FUNCTION

= if x is a continuous random variable, then f(x) is its
probability density function (PDF), when:

Pla<x<b)= f;f(x)dx

o fOOdx =1
= f(x) is a single-valued non-negative number for all real x

= Cumulative probability distribution function:

Fx) = j F)dy



GAUSSIAN DISTRIBUTION

= Large-N limit of both binomial and Poisson distributions:

2
1 (x — u)
P(x) = exp | — >
oV 2T 20
04f
203
:
4
£ 0.2
E
o
& 0.1
-3 -2 —1 0 1 2 3

the area between 1o is 0.68; between 20 is 0.95; and
between 3o is 0.997.



CENTRAL LIMIT THEOREM:

= Form averages M, i

= from repeatedly drawing n samples from a population x;
with finite mean u, variance o2, then
M, —u
lim |— - N(0,1
n—oo [ o / \/71 ] ( )
= Averaging of large number of samples will produce Gaussian,
no matter what the shape of the distribution from which the
sample is drawn.
= errors on averaged samples will always look ‘Gaussian’

Slr—\
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CENTRAL LIMIT THEOREM:

An indication of the power of the central limit theorem.The panels show successive amounts of
‘integration’: in (a), a single value has been drawn;in (b), 200 values have been taken from an average
of two values; (c), 200 values from an average of four; (d), 200 values from an average of |6.

(d)

@



STATISTICS




STATISTICS

= Statistic: some function of the data alone

= Examples:
= the location of the data:
= Average: X = 1/N Y. X;
= Median: X;peq = X; j =N/2+ 0.5, N isodd;N/
2 N is even)

= Mode: X,;,,4¢ = value of X; occurring most frequently, peak
location in the histogram

= the scale or amount of scatter in the data
= Mean deviation: AX = 1/N Y21 1X; — Xmed|
= Mean square deviation: S> = 1/N Y| X; — X|?

= Root-mean-square deviation:rms = S



STATISTICS

= some function f of a random variable x, with distribution
function g, the expectation value:

ELf ()] = (f(x)) = f F0g(x)dx

= With large # of experiments, the average of X will converge to the true
mean value:

Elx] = (x) = jx g(x)dx

= Similarly, the statistics S* will converge to true variance

var[(x — 2] = E[(x — )?] = f (x — w)? g(X)dx

= n-th central moments

y = j (x — )" g(x)dx



REQUIREMENTS FOR STATISTICS

=unbiased
= e.g. Gaussian distribution:

«X=1/N Z’ivle ; is indeed an unbiased estimate of mean u;

= unbiased estimation of the population variance o (sample
variance):

, N
2 — X. — X 2
0t =55 ), K= X
i=1
= differs from the expectation value of S% by the factor
N/(N—1)

= X:yields a minimum value from the sum of the squares of
the deviations, thus a low estimate of the variance.

@®



REQUIREMENTS FOR STATISTICS
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REQUIREMENTS FOR STATISTICS

= consistent:

lim estimator — true value

n—>00
= rms is a consistent measure of the standard deviation of a
Gaussian distribution for large N;

= but biased for small N.

= closeness

= smallest possible deviation from the truth

= robust
= robust against outliers

= e.g. median is far more robust than average



RANDOM VS. SYSTEMATIC

= Variance on the average:

[ N
5 1
S3=E (Nixi—u)
\ =

2

1
- S = — + = > E[(; — (X — )]

L#]

2_.

= Neglecting the second term, the error on the average scale

with 1/+/N.

= Second term contains the covariance:
cov|[X;, X;] = E[(X; — ) (Xj — )]

= Describes the correlation between x; and x;.




RANDOMVS. SYSTEMATIC

= For independent measurements (e.g. photometric
measurements of some objects):

cov|X;, X;| = j(xi — 1) g (x| - )dx; j(x] —u;)9(x| -+ )dx; = 0

« Here g(x|some parameters) describe the PDF of X.

= Random vs. systematics:

= random errors decrease with larger N (1/+/N or slower);

= Systematic errors persist no matter how much data are
collected

= can only be reduced by better understanding the
experiments



ERROR PROPAGATION

= measure variables x, 7y, z --- with independent errors
0X,0Y,0Z -

= interested in some function f (x,v,z,:),the error on

of 0
Sf = 0X +— oY +— Z + -
= 0x lx=x + ‘y =Y * 0z Iz 6 +
= Assuming independent error:
var|f]
of\* of AN
- (&) ‘x XO- i (6:)/) ‘y:Y %y T (E) Z=Z oz T




ERROR PROPAGATION

= S0 we can have variance inverse weighting:

= Data with larger variance are down-weighted.

= e.g. the weighted mean i )
j=1 j=1

= The weight w; = 1/ 0]-2

= The variance of X, is then

n
oh =1/ ) 1/af
=1



COMBINING DISTRIBUTIONS

= Assuming we have the measured x, with PDF g, and
function f (x)

= The PDF h(f) of f could be derived because the
conservation of the probability:

h(f)df = g(x)dx

= Example:
= g(x) = exp(—x) for positive x, and f(x) = log x.

= It’s easy to see that the PDF of f:
h(f) = exp[—exp(f)] exp(f)



COMBINING DISTRIBUTIONS

= Assuming x, y follow PDF of g(x), g(v), the PDF h(z) of
theirsumz =x +y

h(z) = j 9(z — ©)g()dx

= |s therefore a convolution

« Similarly, for z = xy:

h@) = [ 759009 () dx
« And for z = x/y:

() = [ I¥lg@gGx)d



EXAMPLE

= the product of two Gaussian variables of zero mean (e.g. in
radio astronomy, visibility).

= The distribution of the product is (modified Bessel function)

2 |z|
h(z) =— K,

o2 o2

[a—
T

o o
(@) oo

Probability density
=
Z;;




EXAMPLE

= the ratio of two Gaussian variables of zero mean
1 1

= | Independent of o

04r¢1°

Probability density
& o
bo W

<
[




LIKELIHOOD &
INFERENCE




FROM RAW DATA TO PARAMETER

Covariance Matrix »|  Fisher forecast

§14.4 §14.5

Theoretical Two-

ﬁ . .
Points Functions Likelihood

/ Eq. (14.23)

Chs. 9,10, 11, 13

Observed Two-
Point Functions

§14.4

Modern cosmology, 2nd Edition @



LIKELIHOOD

=Suppose you want to weigh somebody:
X; = u(a) +ny



LIKELIHOOD

= Consider N data X;, we estimate the statistics (1/N) }.; X;

= It’s a good estimator for u(a), where a@ = (aq, -+, Ay, )
are unknown parameters (slopes, intercepts etc.)

= We believe that the measurement is scattered with Gaussian
error around
X; = p(a) +n

= with Gaussian distribution
(x — p(@))?

202

P(x|a) = exp |—

1
oV 2T



LIKELIHOOD

= From Bayes’ theorem, the posterior probability
distribution for the parameters a

>N\ 2]
1 X; — R
P(a|X;) « 1_[0 — exp | ( zgga)) | P(a)

= prior information P ().

= Here p is “given”, assuming everything depends on it being the
correct model

= [ eads to the maximum likelihood method and method
of least squares.

= Easy to update models (posterior — prior)

@®



MAXIMUM LIKELIHOOD

» Maximum likelihood (ML)
= derived by Bernoulli in 1776 and Gauss around 182
= worked out in detail by Fisher in 1922

= From the probability density function f (x, «), wed like to
estimate parameter «.

= Data X;, X5, --- Xy independently drawn from f, the
likelihood function is

N
L(X1,X3,Xn) = Hf(XiW)

= assuming that the priors are ‘diffuse’, meaning that they
change little over the peaked region of the likelihood function.

@®




MAXIMUM LIKELIHOOD

= Construct the ‘best’ estimate of a: peak of L

= Define maximum likelihood estimator (MLE) Q:

d
alnﬁ(a) ‘a=62 =0

= MLE is a statistic:
= [t depends only on the data, not on parameters.

= This estimator would have some trouble if the priors are not
diffuse

= meaning they are having as strong an effect on our conclusions as the
data

= minimum variance compared to any other estimate

= not always unbiased

@®



EXAMPLE

= Measured Y; at given independent variables X;, with model
y(a,b) =ax+ b

= Assuming Y; have a Gaussian scatter, each term of likelihood:

2
Y, — (aX; + b
Li(y|(a,b)) = exp [—( (;Gz-l_ )

= Maximizing the log-likelihood gives:
OlnL ZX(Y—aX—b)—O

alnL

Z(Y-—aX —b) =0;

= This produce the ordinary least squares estimate:
XY -V .
ad ==, b=Y—aX
X2 — (X)Z




EXAMPLE

= The source count of extragalactic radio sources:
N(>S)=kS7Y

= N: the number of sources on a particular patch of sky
with flux density greater than S.

= probability distribution:
P(S|y) = dN/dS = ykS~ 0+

= Assuming observed M sources with flux densities S
brighter than S, the normalization k:

f P(S|Y)dS=1-k=S5!
S

0



EXAMPLE

= So the likelihood function:

M M
L(y) = HP(SiIV) = yMs)" HS{(””
[ [

= So the log-likelihood:

InL(y) =MIny — yZln— —ZlnS

= Assuming observed M sources with flux densities S brighter

than S,
S
L2,
l



EXAMPLE

= The intensity of neutrino burst after supernova decays
exponentially after the core collapse. N neutrinos were
detected with arrival times (in order) T1,T,, -

= The probability of a neutrino arriving at time t is:
P(t) = exp[—(t —to)]

= for t > t, and zero otherwise.To estimate parameter t,,,

In L(ty) = Nty — z T,
l

= does not appear to have a maximum by derivative;

= But clearly t, < Ty, within the range, best estimator: t, = Tj.



DEVIATIONS & FISHER MATRIX

= MLE @& is distributed around true value;

= The covariance matrix of this distribution involves the
curvature (Hessian matrix) of L:

0%InL  0%InL
da?  Odaqi0a,

H=10%2InL 0%InL

da,0a;  da?

= This matrix depends on the data, taking the expectation

value, we have the Fisher information matrix:
F =E|H]

@®



DEVIATIONS & FISHER MATRIX

= the covariance matrix of the MLEs of the parameters:
C=F1

= Fisher matrix describes the width of the likelihood function,
the scatter in the maximum-likelihood estimators

= The probability distribution of our N MLEs & is then

P(“l) az, )
1

\/(Zn)N|de Clex [ —(a-a)c Y a-a) ]

= Taking the expectation value is important, as otherwise the
matrix would be different for each set of data




SIMPLE EXAMPLE

= A Gaussian of true mean u and variance o, if we have N
data X;, the log likelihood is

InL = ——E(X —w)? —Nlino

= And Fisher ‘matrix’:
- 0%1InL N
B du? ) o2

= Therefore, the variance on the estimate of the mean is
2
o

N

= As expected~



EXAMPLE

= In the source-count example, we have just one

barameter, the variance on ¥ is then:
1

E[0<L(y)/0y*]

= Which is
v
M

= As long as the errors are the small, we can approximate

?2

M



BAYESIAN LIKELIHOOD ANALYSIS

= From Bayes’ theorem
P(alX;) o« L(a|X;)P ()

= Two great strengths of the Bayesian approach:
= deal with nuisance parameters via marginalization

= the evidence or Bayes factor to choose between models

= asymptotic distribution of the likelihood function:
g S 1 S - S - T
L(a@lX;) = L(@|X;) exp (_E (a —a)F(a— &) )

= Here F is the Fisher information matrix.

= This is called the Laplace approximation.




BAYES FACTOR

= Need to check the ‘fit’ of the two models:
= choice of Model A or Model B

= Using the Bayes factor, to calculate the posterior odds
on Model A, compared to Model B,
J,paLXila, AYP(alA)

[ pe L(X;|a, B)P(r| B)

P =

= The Integration might be cumbersome, but it’s
worth the effort.
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ANALYSIS




FROM RAW DATA TO PARAMETER CONSTRAINTS

Covariance Matrix »| Fisher forecast
§14.4 >< §14.5 \
Theoretical Two- L_y) 1 1 ¢jinod
Points Functions
Chs. 9, 10, 11, 13 / Eq. (14.23)

Observed Two-
Point Functions

§14.4

In £(hy) = —% Y (é(l) _ ctheory;, Aa)) (cOv-l)w (é(l') _ ctheoryy/, )»a))

w



MAPMAKING




MAPMAKING

= Assume the observed time ordered
data
de¢ = Pyis; + ¢

= S; is sky map with pixel index of i,
1 is noise, and Py; is the pointing
matrix.

= To extract the signal from data, consider the likelihood
x? ==2InL({d:}{s¢})

B z (de = Pes)(N™H) g1 (dyr — Pyrysy)

tt'kl




MAPMAKING

= So the MLE is

0x° _
s, —ZZ Pei(N™1)¢pr (dyr = Pyrysi) = 0
y tt'j

= Which leads to
§i = Z(CN)ithj(N_l)tt'dt'
tt!j

(Clgl)ij — z Py (N_l)tt’Pt’j
tt’
— § — CNPTN_ld



TWO-PIONT
FUNCTIONS




CMB POWER SPECTRUM

= Transfer the observed map into spherical harmonics
alPs = f dQY; () A(R)
= the fractional temperature fluctuation A = (T —T,) /T,
AG) = [ a0 @) B, i) +n(@)
= Combine two definitions, one has

obs
AUm Z Bim,im'@rm’ + Nim
l/ /

= isotropic beam — alon? > = aimBi + Nim



CMB POWER SPECTRUM

m) =0 (@may) = 8118 C(D)
« The likelihood function of Aom i = O

, (Mm o) = N D811 8mm
P ((agc@) = TT [ dam P@s2iam) Pamic®)
m=-—I[
P (@) = —— exp[—#| °bS — Bay |2]
= A NQ) 2N () "

= The probability P(a,,,|C (1)) is Gaussian with mean zero
and variance C (1);

= Carry out the integral, we have
obs

£=P(1af>)C®) =
—@I+1))2 1 A

_ (271 [C(I)Bl -|-N(l)]) EXP | —Em;l C([)BZZ—I—N(Z) > @

2




CMB POWER SPECTRUM
= The first derivative of the log of the likelihood

dinL QI+ 1)B})2 _2’: | B?
ac() ~ C(l)B12+N(l) 2 ~ [CHOB} +ND)?

= Setting to zero, obtain the estimator for C (1) is:

[
| 2
C()=B 2<21+1 > |apes —N(l))

m=-—I[

= The error of this estimator:

Var [é(l)] — (é(1)2> —C()?



CMB POWER SPECTRUM
- Expand the first term and use (|a®PS|?) = C(l)Bl2 + N()

2
obs

[
4 1 2 2
g et
1 ?
. —4
_<Bl <2l+1 Zl“

obs
Im

2 2l+3 _22
> )> _— - 1[C(l) NOB;?|

—2B7*NO) (COB? +N®) + B *N®)? - €O

= So the error on estimator

\/Var [é(l)] — \/21 - 1 [C(l) n N(l)B_z]

[C(l) + N(l)Bl_z]z 5,1

Covr =377

@®



GALAXY POWER SPECTRUM

= discrete Fourier transform of the galaxy density field:

3
K grid

Sg(k) =L*% ) " 8g(x;)e k™, where ke (ny,ny,n;)kp

= The fundamental frequency kr = 2 /L
= Similar to CMB C (1), and setting B; = 1, we have estimator

1 ||k|—ko | <Ak /2
Py (ko) = Y 18k — Py
Mk o 2
= The number of modes in each shell:
14nk2Ak 1
Mg o= = "% = VK2Ak
’ 2 k% 4?2 ¢ @



GALAXY POWER SPECTRUM

= The covariance matrix:

Covep = (ﬁg(ka)ﬁg(kﬁ)> _ (ﬁg(ko,)) (ﬁg(kﬂ))

||k |—kqy | <AK/2 { 1K' |—kg|<Ak/2

— Y a2 [{1s0Rised0r) — (g (ng0x0r)|

k kaﬂ k/

= Under Gaussian assumption, this eventually leads to

2
COVa,B = [Pg(ka) + PN] 801,8

Mk o



SAMPLING THE
LIKELIHOOD FUNCTION




A DIRECT METHOD: GRID SCAN

= Divide parameter space into small
grids

= Find the minimum chi-square 2. Y2

= Find confidence levels by
Ax* = x* = Xmin

= L imitation:

: . or _ N :
= lime-consuming:t ~ Ngpig, N is _
the number of parameters :

= Marginalization is complicated!

P1




SAMPLING

= Purposes:

= To generate samples {x(’”)}le from a given probability
distribution P(x)

= To estimate expectation of a function ¢(x) under this
distribution P(x)

B = (p(x)) = j d¥x P(0)¢(x)

= Therefore,

1
0= 32 8(:)



SAMPLING METHODS

= Monte Carlo (MC): Random sampling
= Uniform sampling
= Importance sampling
= Rejection sampling
= Markov chain Monte Carlo (MCMC)
= Metropolis-Hastings method
= Gibbs sampling
= Slice sampling
= Hamiltonian Monte Carlo



IMPORTANCE SAMPLING

= Generate samples from a simpler (wrong) distribution Q (x)

= Assign high probability to “important” values
= adjusting the “importance” of each point by introducing a
weight w, = P*(x(")/Q*(x")

= The expectation is ® = ). qub(x(’”)) /D W,




REJECTION SAMPLING

= Selecting a simpler proposal distribution Q (x), and find
a constant ¢ such that cQ(x) > P(x) for all x;

= Generating two random numbers:
= Sample x from Q(x);

= Generate a uniformly distributed random variable u from
the interval [0, cQ(x)];

«If u > P(x), x is rejected;

= else, it is accepted;



REJECTION SAMPLING

(a)

/ \\\\CQ*(QT)
,’ P* (x) \\

= Work best if Q is a good
approximation to P;

= otherwise acceptance rate
will be too low;

(b) PR = Not suitable in high-

g s cQ*(x) : :
, ~~ dimension (N parameters)
. PH@) N
/ \ case

/ Uu \

T T ®

MacKay 2003



MARKOV CHAIN MONTE CARLO

= Based on simulation;

= Computational time cost is approximately

linearly with the number of parameters t ~ N;

=Generating samples from the full posterior
distribution, easy marginalization;

=Algorithm:

= Metropolis-Hastings, Gibbs, Slice sampling,
Hamiltonian MC, ...



MARKOV CHAIN MONTE CARLO

2D chain points

= Markov Chain: a chain composed by a sequence of
steps (or chain points), that the next ‘step’ in the
sequence depends only upon the previous one;

= Monte Carlo: a computational algorithms which rely on
random sampling, with the algorithm being guided by
some rules designed to give the desired outcome



METROPOLIS-HASTINGS METHOD

= It makes use of a proposal density Q
1 Q(z M) e— which depends on the current state x.
HE Proposal density at x, .
Proposal density at x. Q can be any fixed
density from which we can draw samples;

Pr(z)
= First a new sample is proposed based on

e the previous sample, then the proposed

z(l) * sample is either added to the sequence
Proposal density atx,—, ). 2:(2)) or rejected depending on the value of

i the probability distribution at that point;

= |t generally used for sampling from multi
dimensional distributions, especially when
the number of dimensions is high.

MacKay 2003
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METROPOLIS-HASTINGS METHOD

= MH method obtains the MCMC chain points by

applying the acceptance probability, which is defined
as:

a(0pi1|0n) = min{

P(fns1ld) 9(On|Oni1) 1
p(@n‘d) Q(9n+1’9n) |

= 0,, is the nth chain point (or a parameter set), d is
the observational data, p(6|d) is the posterior
distribution, q(6,,41|6,)is the proposal density.



METROPOLIS-HASTINGS METHOD

= Based on Bayes’ theorem, posterior distribution can be
estimated by L(d|0) p(0)
Old) =
PO = T om0

=p(80) is the prior probability, and L(d|6,,) is the
likelihood function.

= When assuming an uniform prior distribution, we have
p(0ld) ~ L(d|6,)

= Besides, if assume that the proposal density follows the
same Gaussian distribution for every chain point, we
have q(65,41|65) = q(0,|65+1), then we find:

. E(d‘9n+1)
a(Op+1|0n) = 111111{ C(d0,) ,1}




METROPOLIS-HASTINGS METHOD

= 0. Select an initial starting point, randomly jump a few
steps with a step size;

= [. Based on 8,, find 6,,,1 by evaluating proposal
density q(On+1(6n);

= 2. Calculate a(6,,4+116,,);

=3.When a = 1, accept 0,,, 1; otherwise, accept 0,11
by a probability a;

=4.1f 8,,,1 is accepted, 0,,,1 = O, 411;if not, B,,,1 =
6,.;

= 5. repeat the first step.



import numpy as np
import matplotlib.pyplot as plt

# Target distribution: Univariate Gaussian (mean = 5, standard deviation = 2)
def target_distribution(x):
return np.exp(-0.5 * ((x - 5) / 2)**2) / (2 * np.pi * 2**2)**Q.5

# Metropolis-Hastings algorithm
def metropolis_hastings(iterations, proposal_std):
samples = []
current_sample = np.random.randn() # Initial sample from a standard normal distribution
for _ in range(iterations):
# Propose a new sample from a Gaussian distribution centered at the current sample
proposed_sample = current_sample + np.random.normal(scale=proposal_std)

# Calculate acceptance ratio
acceptance_ratio = min(1l, target_distribution(proposed_sample) / target_distribution(current_sample))

# Accept or reject the proposed sample based on the acceptance ratio
if np.random.rand() < acceptance_ratio:
current_sample = proposed_sample

samples.append(current_sample)
return samples

# Parameters
iterations = 10000
proposal_std = 1.0

# Generate samples using Metropolis-Hastings algorithm
samples = metropolis_hastings(iterations, proposal_std)

# Plot the histogram of generated samples and the target distribution

plt.hist(samples, bins=50, density=True, alpha=0.6, label="Metropolis-Hastings Samples"')
x_range = np.linspace(min(samples), max(samples), 100)

plt.plot(x_range, target_distribution(x_range), 'r', label='Target Distribution")
plt.legend()

plt.xlabel('Sample Value')

plt.ylabel('Density")

plt.title('Metropolis-Hastings Sampling")

plt.show()




GIBBS SAMPLING

= A method for sampling from distributions over at least
two dimensions;

= It can be viewed as a special case of the Metropolis
method, in which a sequence of proposal distributions
() are defined in terms of the conditional distributions
of the joint distribution P (x);

= [t assumed that, although P (x) is too complex to draw
samples from directly, its conditional distribution

P (xl-

{xj} . ) are tractable to work with.
J#F1



GIBBS SAMPLING

) T2 ]

T\ ~
4 -
8
= t
|257)
1 .
a I
@) N -
) -1 1 )
_2 R
-2 0 2 4 MacKay 2003
(c) CYR

1 I



SLICE SAMPLING

= It can be applied when the target density P(x) can be
evaluated at any point x;

= Step-size is less important than Metropolis method;

= No requirement that the one-dimensional conditional
distributions be easy to sample from, like Gibbs
sampling;

= Similar to rejection sampling, but no requirement for an
upper-bounding function.



CONVERGENCE CRITERION

= Consider M parallel chains (j = 1--- M), each chain
contains N points (i = 1--- N), then the chain element

IS yi] (a point in parameter space);

= Define the mean of the chain:

N
1 ;
W=NZ%

=1

= Define the mean of all chains:

N,M
NM y

ij=1



CONVERGENCE CRITERION

= Then the variance between chains:
M
1 . 2
By=—— > (3/ =%
n =T z(y y)
j=1
= The variance within a chain:
1 : 2
W = z J _ 3y
O A
lj

= Define the quantity:
. [IN(N—-1D|W+B,(1+1/M)

R = v
= The MCMC chains converge when:
R<11




AFTER OBTAINING THE MCMC CHAINS

= Burn-in period: although the Markov chain eventually
converges to the desired distribution, the initial samples may
follow a very different distribution, especially if the starting point
is in a region of low density. As a result, a burn-in period is
typically necessary, where an initial number of samples are
thrown away (usually the first 100-1000 samples).

= Thinning process: after burn-in, in order to obtain

independent samples, we should only keep every nth sample in
the chains (usually n = 10 — 100).

= Finally, about 10* — 10° samples or chain points are needed to
illustrate the posterior distribution.



1D marginalized / projected
distribution

2D contour
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