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§ star vs galaxy ?





§Data Error (range):
§How can data be used best? Or at all? 
§Correlation, testing the hypothesis, model fitting; 
how do we proceed? 

§ Incomplete samples:
§samples from an experiment cannot be re-run 
(cosmology)

§upper limits  
§We must decide:
§The decision process need some methodology
§no matter how good the experiment. 



Jerzy Neyman, Egon 
Pearson and Ronald 
Fischer.

Thomas Bayes 
(1702–1761)

What’s probability?
How to handle uncertainty?

How to incorporate prior knowledge?



FREQUENTISTS 
§ Consider experiments with a random component.
§Probabilities: the relative frequency of an event, 𝐴, is 
defined as 

𝑃 𝐴 =
#	of	outcomes	consistent	with	A

#	of	experiments

§ The probability of event A is 
the limiting relative 
frequency 



FREQUENTISTS 
§ This definition restricts the things we can add probabilities to: 

§ What is the probability of there being life on Mars 100 billion 
years ago? 

§ not a repeatable experiment
§ Assumption: there is an unknown but fixed underlying 

parameter, 𝜃, for a population (e.g., the mean height of men).
§ Random variation:

§ environmental factors, measurement errors, ... 



THE META-EXPERIMENT IDEA  

§ meta-experiments: consider the current dataset as a single 
realization from all possible datasets. 



THE META-EXPERIMENT IDEA  
§ For example: a populaIon mean is real but unknown, and 

unknowable
§ can only be esImated from the data.

§ From the distribuIon for the sample mean, constructs a 
confidence interval, centered at the sample mean. 
§ Regardless of the loca6on of true mean;
§ Can’t say there’s a 95% probability that the true mean is in this 

interval, because it’s either already in, or it’s not. 
§ the true mean is a fixed value, which doesn’t have a 

distribu6on. 
§ The sample mean does have a distribu6on! 
§ “95% of similar intervals would contain the true mean if each 

interval were constructed from a different random sample like 
this one.” 



BAYESIANS 
§A numerical formalization of our degree of belief:
§ personal belief  → the prior:

§ No fixed values for parameters but a distribution. 
§ All distributions are subjective: Yours is as good as mine 

§Treat the parameters (e.g. mean) as random var. 
§ mean : the mean of my distribution 

§Only the data are real:
§ The population mean is an abstraction

§ Exist only conceptually 
§ some values are more believable than others based 

on the data and their prior beliefs. 



BAYESIANS 
§ Credibility interval: 

§ Posterior: centered near the sample mean, tempered by 
“prior”. 

§ Bayesian can say what the frequentist cannot: 
§ “There is a 95% probability (degree of believability) that 

this interval contains the mean.” 



IN SUMMARY 

§ A frequentist is a person whose long-run ambition is to 
be wrong 5% of the time. 

§ A Bayesian is one who, vaguely expecting a horse, and 
catching a glimpse of a donkey, strongly believes he has 
seen a mule. 

P. G. Hamer 

A frequenIst uses impeccable logic to answer the 
wrong quesIon, while a Bayesian answers the right 
quesIon by making assumpIons that nobody can fully 
believe in. 



EXAMPLE 
§ Before 1987, 4 supernovae had been recorded in 10 
centuries. What, before 1987, was the probability of a bright 
supernova happening in the 20th century? 

§ Three possible answers: 
§ Probability is meaningless in this context. 

§ Supernovae are physically determined events, not random. 

§ From this God’s-eye viewpoint, probability is indeed meaningless; ‘God does 
not play dice…’ 

§ Frequentist: our best estimate of the probability is 4/10, although it is 
obviously not very well determined. 

§ Bayesian: a-priori assignment: 
§ Modeling: stellar mass function, stellar birth rate, metallicity etc.
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PROBABILITY 
§Measure of belief (Cox, 1946):

§ A, B and C are three events

§ wish to have some measure of how strongly we think each is 
likely to happen

§ apply the rule: if A is more likely than B, and B is more likely 
than C, then A is more likely than C.

§Axioms of probability  (Kolmogorov)
§ any random event 𝐴 has a probability 𝑃(𝐴) between 0 and 1;

§ the sure event has 𝑃 𝐴 = 1;

§ If 𝐴 and 𝐵 are exclusive events, then 𝑃 𝐴 𝑜𝑟 𝐵 = 𝑃 𝐴 +
𝑃 𝐵 ;



CONDITIONALITY AND INDEPENDENCE 

§ Two events 𝐴 and 𝐵 are said to be independent:
𝑃 𝐴 𝑎𝑛𝑑 𝐵 = 𝑃 𝐴 𝑃 𝐵

§ Probability of one is unaffected by what we may know about the 
other.

§ conditional probability:

𝑃 𝐴 𝐵 =
𝑃 𝐴 𝑎𝑛𝑑 𝐵

𝑃 𝐵

§Marginalization: 

𝑃 𝐴 =/
!

𝑃 𝐴 𝐵! 𝑃(𝐵!)

§ To get rid of these ‘nuisance parameters’ 𝐵! .



BAYES’  THEOREM

§ Bayes’ theorem:

𝑃 𝐵 𝐴 =
𝑃 𝐴 𝐵 𝑃 𝐵

𝑃 𝐴

§ Particularly, 𝜃 is theory, 𝑑 is data: 

𝑃 𝜃 𝑑 =
𝑃 𝑑 𝜃 𝑃 𝜃

𝑃 𝑑
§ posterior probability: 𝑃 𝜃 𝑑
§ prior probability: 𝑃 𝜃 , state of belief before the experiment

§ Likelihood function: 𝑃 𝑑 𝜃 = ℒ 𝜃 , ℒ 𝑑 𝜃
§ normalizing factor: 𝑃 𝑑



EXAMPLE
§ There are 𝑁 red balls and 𝑀 blue balls in a jar, and 𝑁 +
𝑀 = 10. We draw 𝑇 = 3 times (putting the balls back after 
drawing them) and 𝑅 = 2 red balls. How many red balls 
are there in the jar? 

§Model (hypothesis) probability of red ball:  𝑁/ 𝑁 +𝑀

§ The likelihood (probability of getting 𝑅 red balls):  

𝑇
𝑅

𝑁
𝑁 +𝑀

! 𝑀
𝑁 +𝑀

"#!

§ Prior (uncertain): 
§ uniformly likely between 0 and 𝑁 +𝑀



EXAMPLE

The probability distribution of the number of red balls, for five 
drawings (solid curve) and 50 drawings (dashed curve). 



BINOMIAL DISTRIBUTION
§ 2 outcomes: ‘success’ or ‘failure’:

§ each successive trials are independent, with probability 𝜌

§ the chance of 𝑛 successes in 𝑁 trials:
𝑃 𝑛 = 𝑁

𝑛 𝜌" 1 − 𝜌 #$"

§ The mean: 

/
"%&

#

𝑛 𝑃 𝑛 = 𝑁𝜌

§ The variance (mean square value): 

/
"%&

#

𝑛 − 𝑁𝜌 '𝑃 𝑛 = 𝑁𝜌 1 − 𝜌



EXAMPLE
§ Before 1987, 4 supernovae had been recorded in 10 centuries. 

What, before 1987, was the probability of a bright supernova 
happening in the 20th century? 

§ Define supernova rate per century 𝜌, posterior:

𝑃 𝜌 𝑑𝑎𝑡𝑎 ∝ 10
4 𝜌( 1 − 𝜌 )× 𝑝𝑟𝑖𝑜𝑟 𝑜𝑛 𝜌

§ Take prior to be uniform, and normalize:

*
$

%
𝑃 𝜌 𝑑𝑎𝑡𝑎 𝑑𝜌 = 1

§ for 𝑛 supernovae in 𝑚 centuries, the distribution is:
𝑃 𝜌 𝑑𝑎𝑡𝑎 = 𝜌" 1 − 𝜌 *$"/𝐵 𝑛 + 1,𝑚 − 𝑛 + 1

§ Here 𝐵[𝑛,𝑚] is beta function.



EXAMPLE

The posterior probability distribution for 𝜌, given that we have four supernovae in 10
centuries. 



POISSON DISTRIBUTION
§ derives from the binomial in the limiting case of very rare 

(independent) events and a large number of trials:

§ Binomial: 𝜌 → 0,  𝑁𝜌 → 𝜇 = finite value. 

§ The probability of 𝑛 events in a given interval, with the expectation of 
𝜇 events in the same interval

𝑃 𝑛 =
𝜇&

𝑛!
𝑒#'

§ The variance of the Poisson distribution is also 𝜇. 



EXAMPLE
§ Poisson statistics govern the number of photons arriving 
during an integration. 

§ The probability of a photon arriving in a fixed interval of 
time is (often) small. The arrivals of successive photons are 
independent.

§ Integration over time 𝑡 of photons arriving at a rate 𝜆.

§Mean photons: 
𝜇 = 𝜆𝑡

§ the fluctuation on this number will be 
𝜎 = 𝜇



EXAMPLE
§ In large-scale structure, the galaxy distribution is discrete; 

§ In a voxel of volume 𝑉, 𝑁 average galaxies; 

§The variance 𝜎!" = 𝑁 = 𝑛𝑉; 

§ ”shot noise” contribution of the galaxy distribution: 1/𝑛



PROBABILITY DENSITY FUNCTION

§ if 𝑥 is a continuous random variable, then 𝑓(𝑥) is its 
probability density function (PDF), when: 

§𝑃 𝑎 < 𝑥 < 𝑏 = ∫"
# 𝑓 𝑥 𝑑𝑥

§∫$%
% 𝑓 𝑥 𝑑𝑥 = 1

§ 𝑓 𝑥 is a single-valued non-negative number for all real x

§Cumulative probability distribution function:

𝐹 𝑥 = O
$%

&
𝑓 𝑦 𝑑𝑦



GAUSSIAN DISTRIBUTION
§ Large-N limit of both binomial and Poisson distributions:

𝑃 𝑥 =
1

𝜎 2𝜋
exp −

𝑥 − 𝜇 '

2𝜎'

the area between 1𝜎 ̇is 0.68; between ̇2𝜎 is 0.95; and 
between ̇3𝜎 is 0.997. 



§ Form averages 𝑀'

𝑀" =
1
𝑛
/
!%.

"

𝑥!

§ from repeatedly drawing 𝑛 samples from a population 𝑥!
with finite mean 𝜇, variance 𝜎(, then

𝑙𝑖𝑚
'→%

𝑀' − 𝜇
𝜎/ 𝑛

→ 𝑁(0,1)

§ Averaging of large number of samples will produce Gaussian, 
no matter what the shape of the distribution from which the 
sample is drawn.
§ errors on averaged samples will always look ‘Gaussian’



An indication of the power of the central limit theorem. The panels show successive amounts of 
‘integration’: in (a), a single value has been drawn; in (b), 200 values have been taken from an average 

of two values; (c), 200 values from an average of four; (d), 200 values from an average of 16. 





§ Statistic:  some function of the data alone

§ Examples: 
§ the location of the data: 

§ Average: 5𝑋 = 1/𝑁 ∑()%* 𝑋(
§ Median:  𝑋+,- = 𝑋. (𝑗 = 𝑁/2 + 0.5, 𝑁 𝑖𝑠 𝑜𝑑𝑑;𝑁/
2 𝑁 𝑖𝑠 𝑒𝑣𝑒𝑛)

§ Mode: 𝑋+/-, = value of 𝑋( occurring most frequently, peak 
location in the histogram 

§ the scale or amount of scatter in the data
§ Mean deviation: 𝛥𝑋 = 1/𝑁 ∑()%* 𝑋( − 𝑋+,-
§ Mean square deviation: 𝑆0 = 1/𝑁 ∑()%* 𝑋( − 5𝑋 0

§ Root-mean-square deviation: 𝑟𝑚𝑠 = 𝑆



§ some function 𝑓 of a random variable 𝑥, with distribution 
function 𝑔, the expectation value: 

𝐸 𝑓 𝑥 = 𝑓 𝑥 = *𝑓 𝑥 𝑔 𝑥 𝑑𝑥

§ With large # of experiments, the average of 5𝑋 will converge to the true 
mean value:

𝐸 𝑥 = 𝑥 = *𝑥 𝑔 𝑥 𝑑𝑥

§ Similarly, the statistics 𝑆0 will converge to true variance 

var 𝑥 − 𝜇 0 = 𝐸 𝑥 − 𝜇 0 = * 𝑥 − 𝜇 0 𝑔 𝑥 𝑑𝑥

§ n-th central moments 

𝜇& = * 𝑥 − 𝜇 & 𝑔 𝑥 𝑑𝑥



§unbiased
§e.g. Gaussian distribution:

§ K𝑋 = 1/𝑁 ∑!%.# 𝑋! is indeed an unbiased estimate of mean 𝜇 ;
§ unbiased estimation of the population variance 𝜎' (sample 

variance):

𝜎/' =
1

𝑁 − 1
/
!%.

#

𝑋! − K𝑋 '

§ differs from the expectation value of 𝑆' by the factor 
𝑁/(𝑁 − 1)

§ K𝑋: yields a minimum value from the sum of the squares of 
the deviations, thus a low estimate of the variance.



𝑥! drawn at random from a Gaussian distribution of 𝜎 = 1: (a) 20 values, (b) 100 values, (c) 500 
values, (d) 2500 values. The average values of 𝑥! are 0.003, 0.080, 0.032 and 0.005; the median 
values 0.121, 0.058, 0.069 and 0.003; and the rms values 0.968, 1.017, 0.986 and 1.001. Solid 

curves represent Gaussians of unit area and standard deviation. 



§ consistent:
lim
'→%

estimator → true value
§ rms is a consistent measure of the standard deviation of a 

Gaussian distribution for large N;

§ but biased for small N.

§ closeness
§ smallest possible deviation from the truth

§ robust
§ robust against outliers
§ e.g. median is far more robust than average



§ Variance on the average:

𝑆*' = 𝐸
1
𝑁
/
!%.

#

𝑋! − 𝜇

'

→ 𝑆*' =
𝜎'

𝑁
+

1
𝑁'/

!01

𝐸 (𝑋! − 𝜇)(𝑋1 − 𝜇)

§Neglecting the second term, the error on the average scale 
with 1/ 𝑁.

§ Second term contains the covariance:
cov 𝑋! , 𝑋* = 𝐸 (𝑋# − 𝜇)(𝑋$ − 𝜇)

§Describes the correlation between 𝑥! and 𝑥* .



§ For independent measurements (e.g. photometric 
measurements of some objects):

cov 𝑋( , 𝑋. = * 𝑥( − 𝜇( 𝑔 𝑥( ⋯ 𝑑𝑥(* 𝑥. − 𝜇. 𝑔 𝑥. ⋯ 𝑑𝑥. = 0

§Here 𝑔 𝑥 𝑠𝑜𝑚𝑒 𝑝𝑎𝑟𝑎𝑚𝑒𝑡𝑒𝑟𝑠 describe the PDF of 𝑋.

§Random vs. systematics: 
§ random errors decrease with larger 𝑁 (1/ 𝑁 or slower);
§ Systematic errors persist no matter how much data are 
collected
§ can only be reduced by better understanding the 
experiments



§measure variables 𝑥, 𝑦, 𝑧⋯ with independent errors 
𝛿𝑋, 𝛿𝑌, 𝛿𝑍⋯

§ interested in some function 𝑓(𝑥, 𝑦, 𝑧,⋯ ), the error on 𝑓

𝛿𝑓 =
𝜕𝑓
𝜕𝑥

V
2%3

𝛿𝑋 +
𝜕𝑓
𝜕𝑦

V
4%5

𝛿𝑌 +
𝜕𝑓
𝜕𝑧
V
6%7

𝛿𝑍 + ⋯

§ Assuming independent error:
var 𝑓

=
𝜕𝑓
𝜕𝑥

'
V
2%3

𝜎2' +
𝜕𝑓
𝜕𝑦

'
V
4%5

𝜎4' +
𝜕𝑓
𝜕𝑧

'
V
6%7

𝜎6' +⋯



§ So we can have variance inverse weighting:
§ Data with larger variance are down-weighted.

§ e.g. the weighted mean

K𝑋8 =/
1%.

"

𝑤1 K𝑋1 //
1%.

"

𝑤1

§ The weight 𝑤* = 1/𝜎*(

§ The variance of ;𝑋% is then 

𝜎+( = 1/d
*,-

'

1/𝜎*(



§ Assuming we have the measured 𝑥, with PDF 𝑔, and 
function 𝑓(𝑥)

§ The PDF ℎ 𝑓 of 𝑓 could be derived because the 
conservation of the probability: 

ℎ 𝑓 𝑑𝑓 = 𝑔 𝑥 𝑑𝑥
§ Example: 

§𝑔 𝑥 = 𝑒𝑥𝑝 −𝑥 for positive 𝑥, and 𝑓 𝑥 = 𝑙𝑜𝑔 𝑥.

§ It’s easy to see that the PDF of 𝑓:
ℎ 𝑓 = 𝑒𝑥𝑝 −𝑒𝑥𝑝 𝑓 𝑒𝑥𝑝 𝑓



§ Assuming 𝑥, 𝑦 follow PDF of 𝑔 𝑥 , 𝑔 𝑦 , the PDF ℎ 𝑧 of 
their sum 𝑧 = 𝑥 + 𝑦

ℎ 𝑧 = O𝑔 𝑧 − 𝑥 𝑔 𝑥 𝑑𝑥

§ Is therefore a convolution 

§ Similarly, for 𝑧 = 𝑥𝑦:

ℎ 𝑧 = O
1
𝑥 𝑔 𝑥 𝑔

𝑧
𝑥 𝑑𝑥

§ And for 𝑧 = 𝑥/𝑦:

ℎ 𝑧 = O 𝑥 𝑔 𝑥 𝑔 𝑧𝑥 𝑑𝑥



§ the product of two Gaussian variables of zero mean (e.g. in 
radio astronomy, visibility).

§ The distribution of the product is (modified Bessel function)

ℎ 𝑧 =
2
𝜋𝜎'

𝐾&
𝑧
𝜎'



§ the ratio of two Gaussian variables of zero mean 

ℎ 𝑧 =
1
𝜋

1
1 + 𝑧'

§ ! Independent of 𝜎





Modern cosmology, 2nd Edition 



§Suppose you want to weigh somebody:
𝑋a = 𝜇 𝛼⃗ + 𝑛a



§ Consider 𝑁 data 𝑋! , we estimate the statistics 1/𝑁 ∑!𝑋!
§ It’s a good estimator for 𝜇(𝛼⃗), where 𝛼⃗ = (𝛼-, ⋯ , 𝛼', ⋯ )
are unknown parameters (slopes, intercepts etc.)

§We believe that the measurement is scattered with Gaussian 
error around

𝑋! = 𝜇 𝛼⃗ + 𝑛!
§with Gaussian distribution

𝑃 𝑥|𝛼⃗ =
1

𝜎 2𝜋
exp −

𝑥 − 𝜇(𝛼⃗) '

2𝜎'



§ From Bayes’ theorem, the posterior probability 
distribution for the parameters 𝛼⃗

𝑃 𝛼⃗ 𝑋# ∝?
#

1
𝜎 2𝜋

exp −
𝑋# − 𝜇 𝛼⃗

"

2𝜎" 𝑃 𝛼⃗

§ prior information 𝑃 𝛼⃗ .
§ Here 𝜇 is “given”, assuming everything depends on it being the 

correct model

§ Leads to the maximum likelihood method and method 
of least squares.

§Easy to update models (posterior → prior)



§Maximum likelihood (ML)
§ derived by Bernoulli in 1776 and Gauss around 1821
§ worked out in detail by Fisher in 1922

§ From the probability density function 𝑓(𝑥, 𝛼), we’d like to 
estimate parameter 𝛼.

§Data 𝑋-, 𝑋(, ⋯𝑋. independently drawn from 𝑓, the 
likelihood function is

ℒ 𝑋., 𝑋', ⋯ 𝑋# =e
#

𝑓 𝑋! 𝛼

§ assuming that the priors are ‘diffuse’, meaning that they 
change little over the peaked region of the likelihood function.



§ Construct the ‘best’ estimate of 𝛼:  peak of ℒ
§Define maximum likelihood estimator (MLE) m𝛼:

𝜕
𝜕𝛼

𝑙𝑛 ℒ(𝛼) V
9%:9

= 0

§MLE is a statistic: 
§ It depends only on the data, not on parameters.

§ This estimator would have some trouble if the priors are not
diffuse
§ meaning they are having as strong an effect on our conclusions as the 

data

§minimum variance compared to any other estimate

§ not always unbiased



§ Measured 𝑌! at given independent variables 𝑋! , with model 
𝑦 𝑎, 𝑏 = 𝑎𝑥 + 𝑏

§ Assuming 𝑌! have a Gaussian scatter, each term of likelihood: 

ℒ! 𝑦 𝑎, 𝑏 = exp −
𝑌! − 𝑎𝑋! + 𝑏

'

2𝜎'

§ Maximizing the log-likelihood gives:
𝜕 𝑙𝑛 ℒ
𝜕𝑎

= −2)
!

𝑋! 𝑌! − 𝑎𝑋! − 𝑏 = 0

𝜕 𝑙𝑛 ℒ
𝜕𝑏

= −2)
!

𝑌! − 𝑎𝑋! − 𝑏 = 0;

§ This produce the ordinary least squares estimate: 

h𝑎 =
𝑋𝑌 − K𝑋 K𝑌
𝑋' − K𝑋 ' ,

i𝑏 = K𝑌 − h𝑎 K𝑋



§The source count of extragalactic radio sources:
𝑁 > 𝑆 = 𝑘𝑆&'

§𝑁: the number of sources on a particular patch of sky 
with flux density greater than 𝑆.

§probability distribution: 
𝑃 𝑆|𝛾 = 𝑑𝑁/𝑑𝑆 = 𝛾𝑘𝑆& '()

§Assuming observed 𝑀 sources with flux densities 𝑆
brighter than 𝑆*, the normalization 𝑘: 

M
+!

,
𝑃 𝑆|𝛾 𝑑𝑆 = 1 → 𝑘 = 𝑆*

'



§ So the likelihood function:

ℒ 𝛾 =o
!

/

𝑃 𝑆! 𝛾 = 𝛾/𝑆0
/1o

!

/

𝑆!
$ 12-

§ So the log-likelihood: 

ln ℒ 𝛾 = 𝑀 ln𝛾 − 𝛾d
!

ln
𝑆!
𝑆0
−d

!

ln 𝑆!

§ Assuming observed 𝑀 sources with flux densities 𝑆 brighter 
than 𝑆0

m𝛾 = 𝑀/d
!

ln
𝑆!
𝑆0



§ The intensity of neutrino burst after supernova decays 
exponentially after the core collapse. 𝑁 neutrinos were 
detected with arrival times (in order) 𝑇-, 𝑇(, ⋯

§ The probability of a neutrino arriving at time 𝑡 is:
𝑃 𝑡 = exp − 𝑡 − 𝑡&

§ for 𝑡 > 𝑡0 and zero otherwise. To estimate parameter 𝑡0,

𝑙𝑛 ℒ 𝑡& = 𝑁𝑡& −/
!

𝑇!

§ does not appear to have a maximum by derivative;

§ But clearly 𝑡0 < 𝑇- , within the range, best estimator: 𝑡̂0 = 𝑇- .



§MLE N𝛼 is distributed around true value;

§The covariance matrix of this distribution involves the 
curvature (Hessian matrix) of ℒ:

ℋ =

𝜕" 𝑙𝑛 ℒ
𝜕𝛼)"

𝜕" 𝑙𝑛 ℒ
𝜕𝛼)𝜕𝛼"

⋯

𝜕" 𝑙𝑛 ℒ
𝜕𝛼"𝜕𝛼)

𝜕" 𝑙𝑛 ℒ
𝜕𝛼""

⋯

⋮ ⋮ ⋱
§This matrix depends on the data, taking the expectation 
value, we have the Fisher information matrix: 

𝐹 = 𝐸 ℋ



§ the covariance matrix of the MLEs of the parameters:
𝐶 = 𝐹$-

§ Fisher matrix describes the width of the likelihood function, 
the scatter in the maximum-likelihood estimators

§ The probability distribution of our 𝑁 MLEs m𝛼 is then
𝑃 h𝛼., h𝛼', ⋯

=
1

2𝜋 #| 𝑑𝑒𝑡 𝐶 |
𝑒𝑥𝑝 −

1
2

i⃗𝛼 − 𝛼⃗ 𝐶$. i⃗𝛼 − 𝛼⃗
;

§ Taking the expectation value is important, as otherwise the 
matrix would be different for each set of data



§ A Gaussian of true mean 𝜇 and variance 𝜎(, if we have 𝑁
data 𝑋! , the log likelihood is

𝑙𝑛 ℒ = −
1
2𝜎'

/
!

𝑋! − 𝜇 ' − 𝑁 𝑙𝑛 𝜎

§ And Fisher ‘matrix’: 

𝐹 = −𝐸
𝜕' 𝑙𝑛 ℒ
𝜕𝜇'

=
𝑁
𝜎'

§ Therefore, the variance on the estimate of the mean is
𝜎(

𝑁
§ As expected~



§ In the source-count example, we have just one 
parameter, the variance on N𝛾 is then: 

−
1

𝐸 𝜕"ℒ 𝛾 /𝜕𝛾"

§Which is 
𝛾"

𝑀
§As long as the errors are the small, we can approximate 

N𝛾"

𝑀



§ From Bayes’ theorem
𝑃 𝛼⃗ 𝑋!) ∝ ℒ 𝛼⃗ 𝑋! 𝑃 𝛼⃗

§ Two great strengths of the Bayesian approach:
§ deal with nuisance parameters via marginalization
§ the evidence or Bayes factor to choose between models

§ asymptotic distribution of the likelihood function:

ℒ 𝛼⃗ 𝑋! = ℒ i⃗𝛼 𝑋! exp −
1
2

i⃗𝛼 − 𝛼⃗ 𝐹 i⃗𝛼 − 𝛼⃗
;

§Here 𝐹 is the Fisher information matrix. 

§ This is called the Laplace approximation.



§Need to check the ‘fit’ of the two models: 
§ choice of Model A or Model B

§Using the Bayes factor, to calculate the posterior odds 
on Model A, compared to Model B,

𝒫 =
∫- 𝑝.ℒ 𝑋# 𝛼, 𝐴 𝑃 𝛼 𝐴
∫- 𝑝/ ℒ 𝑋# 𝛼, 𝐵 𝑃 𝛼 𝐵

§The Integration might be cumbersome, but it’s 
worth the effort.









§ Assume the observed time ordered 
data

𝑑3 = 𝑃3!𝑠! + 𝜂3
§ 𝑠! is sky map with pixel index of 𝑖, 
𝜂3 is noise, and 𝑃3! is the pointing 
matrix.

§ To extract the signal from data, consider the likelihood 
𝜒( = −2 lnℒ 𝑑3 | 𝑠4
= d

33545

𝑑3 − 𝑃34𝑠4 𝑁$-
335 𝑑35 − 𝑃355𝑠5



§ So the MLE is 
𝜕𝜒(

𝜕𝑠!
= −2d

335*

𝑃3! 𝑁$-
335 𝑑35 − 𝑃355𝑠5 = 0

§Which leads to 

𝑠̂! =d
335*

𝐶. !*𝑃3* 𝑁$-
335𝑑35

𝐶.$- !* =d
335
𝑃3! 𝑁$-

335𝑃35*

→ 𝑠̂ = 𝐶.𝑃6𝑁$-𝑑





§ Transfer the observed map into spherical harmonics 

§ the fractional temperature fluctuation Δ = 𝑇 − 𝑇0 /𝑇0

§ Combine two definitions, one has

§ isotropic beam →



§ The likelihood function of 

§ The probability 𝑃 𝑎57 𝐶 𝑙 is Gaussian with mean zero 
and variance 𝐶 𝑙 ;

§ Carry out the integral, we have



§ The first derivative of the log of the likelihood

§ Setting to zero, obtain the estimator for 𝐶 𝑙 is: 

§ The error of this estimator: 



§ Expand the first term and use

§ So the error on estimator 



§ discrete Fourier transform of the galaxy density field:

§ The fundamental frequency 𝑘8 = 2𝜋/𝐿
§ Similar to CMB 𝐶 𝑙 , and setting 𝐵5 = 1, we have estimator

§ The number of modes in each shell:



§ The covariance matrix:

§Under Gaussian assumption, this eventually leads to





§Divide parameter space into small 
grids

§ Find the minimum chi-square 𝜒9:;(

§ Find confidence levels by 
Δ𝜒' = 𝜒' − 𝜒<=>'

§ Limitation: 

§Time-consuming: 𝑡 ∼ 𝑛0123! , 𝑁 is 
the number of parameters

§Marginalization is complicated!



§Purposes:

§ To generate samples 𝒙 <
<,-
=

from a given probability 
distribution 𝑃 𝒙

§ To estimate expectation of a function 𝜙 𝒙 under this 
distribution 𝑃 𝒙

Φ = 𝜙 𝒙 = O𝑑.𝑥 𝑃 𝒙 𝜙 𝒙

§ Therefore, 

Φ =
1
𝑅d

<

𝜙 𝒙 <



§Monte Carlo (MC):  Random sampling
§Uniform sampling
§ Importance sampling
§Rejection sampling

§Markov chain Monte Carlo (MCMC)
§Metropolis-Hastings method
§Gibbs sampling
§ Slice sampling 
§Hamiltonian Monte Carlo
§…………



§Generate samples from a simpler (wrong) distribution 𝑄 𝑥
§Assign high probability to “important” values 
§ adjusting the “importance” of each point by introducing a 
weight 𝑤< = 𝑃∗ 𝒙 < /𝑄∗ 𝒙 <

§The expectation is Φ = ∑4𝑤4𝜙 𝒙 4 /∑4𝑤4



§Selecting a simpler proposal distribution 𝑄 𝑥 , and find 
a constant 𝑐 such that 𝑐𝑄 𝑥 > 𝑃 𝑥 for all 𝑥;

§Generating two random numbers:
§ Sample 𝑥 from 𝑄 𝑥 ;
§Generate a uniformly distributed random variable 𝑢 from 
the interval 0, 𝑐𝑄 𝑥 ;

§ If 𝑢 > 𝑃 𝑥 , 𝑥 is rejected; 

§else, it is accepted; 



§Work best if 𝑄 is a good 
approximation to P;

§ otherwise acceptance rate 
will be too low;

§Not suitable in high-
dimension (N parameters) 
case



§Based on simulation; 

§Computational time cost is approximately 
linearly with the number of parameters 𝑡 ∼ 𝑁;

§Generating samples from the full posterior 
distribution, easy marginalization; 

§Algorithm: 
§Metropolis-Hastings, Gibbs, Slice sampling, 
Hamiltonian MC, …



§Markov Chain: a chain composed by a sequence of 
steps (or chain points), that the next ‘step’ in the 
sequence depends only upon the previous one;

§Monte Carlo: a computational algorithms which rely on 
random sampling, with the algorithm being guided by 
some rules designed to give the desired outcome



§ It makes use of a proposal density Q 
which depends on the current state x. 
Proposal density at x. Q can be any fixed 
density from which we can draw samples;

§ First a new sample is proposed based on 
the previous sample, then the proposed 
sample is either added to the sequence 
or rejected depending on the value of 
the probability distribution at that point;

§ It generally used for sampling from multi 
dimensional distributions, especially when 
the number of dimensions is high.



§MH method obtains the MCMC chain points by 
applying the acceptance probability, which is defined 
as:

§𝜃5 is the nth chain point (or a parameter set), 𝒅 is 
the observational data, 𝑝 𝜃 𝒅 is the posterior 
distribution, 𝑞 𝜃5()|𝜃5 is the proposal density.



§Based on Bayes’ theorem, posterior distribution can be 
estimated by

§𝑝 𝜃 is the prior probability, and ℒ 𝒅|𝜃5 is the 
likelihood function.

§When assuming an uniform prior distribution, we have 
𝑝 𝜃 𝒅 ∼ ℒ 𝒅|𝜃5

§Besides, if assume that the proposal density follows the 
same Gaussian distribution for every chain point, we 
have 𝑞 𝜃5()|𝜃5 = 𝑞 𝜃5|𝜃5() , then we find:



§0. Select an initial starting point, randomly jump a few 
steps with a step size;

§1. Based on 𝜃5, find 𝜃5() by evaluating proposal 
density 𝑞 𝜃5()|𝜃5 ;

§2. Calculate 𝑎 𝜃5() 𝜃5 ;

§3. When 𝑎 = 1, accept 𝜃5(); otherwise, accept 𝜃5()
by a probability 𝑎;

§4. If 𝜃5() is accepted, 𝜃5() = 𝜃5(); if not, 𝜃5() =
𝜃5;

§5. repeat the first step.





§A method for sampling from distributions over at least 
two dimensions;

§ It can be viewed as a special case of the Metropolis 
method, in which a sequence of proposal distributions 
𝑄 are defined in terms of the conditional distributions 
of the joint distribution 𝑃(𝑥);

§ It assumed that, although 𝑃 𝑥 is too complex to draw 
samples from directly, its conditional distribution 
𝑃 𝑥# 𝑥$ $6#

are tractable to work with.





§ It can be applied when the target density 𝑃(𝑥) can be 
evaluated at any point 𝑥;

§Step-size is less important than Metropolis method;

§No requirement that the one-dimensional conditional 
distributions be easy to sample from, like Gibbs 
sampling;

§Similar to rejection sampling, but no requirement for an 
upper-bounding function.



§Consider 𝑀 parallel chains (𝑗 = 1⋯𝑀), each chain 
contains 𝑁 points (𝑖 = 1⋯𝑁), then the chain element 
is 𝑦#

$ (a point in parameter space); 

§Define the mean of the chain:

;𝑦$ =
1
𝑁k
#7)

!

𝑦#
$

§Define the mean of all chains: 

;𝑦$ =
1
𝑁𝑀 k

#,$7)

!,9

𝑦#
$



§Then the variance between chains: 

𝐵" =
1

𝑀 − 1
/
1%.

?

K𝑦1 − K𝑦
'

§The variance within a chain:

𝑊 =
1

𝑀 𝑁 − 1
/
!1

𝑦!
1 − K𝑦1

'

§Define the quantity: 
i𝑅 =

𝑁 𝑁 − 1 𝑊 + 𝐵" 1 + 1/𝑀
𝑊

§The MCMC chains converge when:
l𝑅 < 1.1



§ Burn-in period: although the Markov chain eventually 
converges to the desired distribution, the initial samples may 
follow a very different distribution, especially if the starting point 
is in a region of low density. As a result, a burn-in period is 
typically necessary, where an initial number of samples are 
thrown away (usually the first 100-1000 samples).

§ Thinning process: after burn-in, in order to obtain 
independent samples, we should only keep every nth sample in 
the chains (usually 𝑛 = 10 − 100).

§ Finally, about 10( − 10@ samples or chain points are needed to 
illustrate the posterior distribution.





THANK YOU


