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• Dark Ages:  No luminous star exists (z > 30)
• Cosmic Dawn: Emergence of the initial stars and galaxies (z ~ 20-30)
• Epoch of Reionization (EoR): UV photons from luminous objects 

ionize HI in the IGM (z ~ 6-15)

Credit: 
NAOJ

History of the Universe

None of these have been detected !!!



The only way to study this period:  

Observing Neutral Hydrogen 21cm Radiation



• Exploring the First Billion Years
• Mapping the Structure of the Early Universe
• Witnessing Births and Deaths of First Stars
• Unraveling the Formation of Earliest Galaxies

The SKA-low array: 
Unveiling the Cosmic Dawn and reionization



First Stars

First Black Holes

The Epoch of  
Reionization

z =1100 z < 6z ≈ 50 z ≈ 8

Dark Ages

Brightness temperature probes different 
physics at different times

credit: Josh Dillon





21cm  Power spectrum measurements



Compared to LOFAR: 
25% better resolution, 8  the sensitivity, 135  faster× ×

 SKA-low array



• 131,072 log-periodic antennas spread between 512 stations (~74km)
• Collecting area: 419,000 m2 

• Frequency range: 50 MHz - 350 MHz



Why is it so difficult to observe the 21 
cm signal from the early universe?



FG simulations Foreground Challenges 





Concerns about Modelling of the EDGES Data

•Fit foregrounds using low-order 
polynomials in log-log space

Tant = T75 ( v
v75 )

β+γ ln( v
v75 )+a4[ln( v

v75 )]
2

+a5[ln( v
v75 )]

3

+ TCMB



Raw SDC3a image 

(natural weighting) True EOR  

Challenge: FG contamination 
•five orders of magnitude brighter 
•FG removal accuracy of at least 1 in 10,000 required !!!



The key to separating out foregrounds: 
their spectral smoothness

foreground

21cm



Data	cube/3D	maps	
(frequency+	spatial)	

1st	
component	

2nd
component

3rd
component .... nth

component

foreground	removal	-
source	separation	

method

Cosmological 21 cm signal 

Scientific goal



From Physics to Smooth Foreground Model
• Synchrotron radiation is emitted by relativistic electrons spiraling in magnetic fields. 

• Brightness temperature approximately follows a power law in frequency: ,where α is the 
spectral index related to the electron energy distribution. 

• This power-law form arises because the electron energy spectrum is itself a power law: 

T(ν) ∝ ν−α

N(E) ∝ E−p

In practice,  realistic spectra have small deviations. α varies slightly with frequency due to: 

• Energy-dependent electron cooling, 

• Superposition of multiple electron populations, 

• Magnetic field variations, 

• Propagation effects (e.g., absorption, scattering) 
This means the spectrum is not exactly a power law, but rather a smoothly curved function of frequency



Mathematical modeling: frequency-dependent 
spectral index

• The brightness temperature is:    

• Real spectra deviate smoothly from pure power laws 

• In reality, the spectral index α depends on frequency: , with slow variation in ν 

• Taylor (polynomial) expansion in log–frequency:  

     

• Return to linear (up to the 3rd order) scale:  

    

T(ν, n̂) ≈ T*(n̂)( ν
ν* )

α(n̂,ν)

α = α(ν, n̂)

ln T(ν, n̂) = a*(n̂) + a1(n̂)ln (ν/ν*) + 1
2 a2(n̂)[ln (ν/ν*)]2 + …

T(ν, n̂) = T*(n̂)( ν
ν* )

a1(n̂)
exp [ 1

2 a2(n̂)(ln ν
ν* )

2
+ 1

6 a3(n̂)(ln ν
ν* )

3]



some examples:
a1 = -2.8 
a2 = 0.1 
a3 = 0.05  
 

a1 = -2.8 
a2 = 10.1 
a3 = 0.05  
 

linear space

linear space

log-log space

log-log space



Frequency covariance:

So the expectation becomes (for Gaussian pdf): ⟨e−δα⋅ln(νν′￼/ν2
f )⟩ = exp

1
2

σ2
α ln ( νν′￼

ν2
f )

2

Then the covariance of temperature is related to : 

⟨T(ν)T (ν′￼)⟩ = ⟨A2 ( νν′￼

ν2
f )

−α

⟩ = A2 ( νν′￼

ν2
f )

−ᾱ

⟨exp −δα ⋅ ln ( νν′￼

ν2
f ) ⟩

T(ν, n̂) = Tf(n̂)( ν
νf )

−α(n̂)

with some approximations, one can find Cov(ν, ν′￼) ∝ exp (−
ln2 (ν/ν′￼)

2ξ2 )



Type Reference Methods

Foreground Avoidance	
Datta et al . 2010 Trott et al. 2012 Morales 
et al. 2012 Parsons et al. 2013 Pober et al. 
2013 Liu et al. 2014a,b

EOR Window, delay spectrum

Foreground suppression	 Zaldarriaga et al 2004;  McQuinn et al. 
(2006); Morales et al. 2006; Gleser et al. 
2008; Jelic et al. 2008; Bowman et al. 2006; 
Liu et al. 2009; Datta et al. 2009; Petrovic & 
Oh (2011), Datta et al. 2010, Trott et al. 
2012, Morales et al. 2012, Liu et al. 2008, 
Harker et al. 2008, 2018, Chapman et al. 
2013, Chapman et al. 2012, 2016, Zhang 
2015, Bonaldi & Brown 2015, Shaw 2015, 
Mertens 2018, Makinen 2021, Tauscher 
2018, 2020, Rapetti 2020, Kennedy 2023,…	

Power-law fitting, PCA/SVD, FASTICA, WP 
smoothing, CCA, GMCA, HIEMICA, K-L 
transform, Gaussian Process, Deep 
learning，Gibbs sampling, Eigenanalysis,… 

21cm Foreground removal methods



A Fast Simulation: Galactic synchrotron

Tsync(ν, n̂) = T408(n̂)( νH

ν )
α(n̂)

+ ΔTGaussian(ν, n̂)
Santos, Cooray, Knox 2003

408 MHz



let’s simulate them step-by-step  



Foreground simulations: isotropic components

Santos et al. (2005) 

Le Zhang 2016  

830 MHz

synchrotron 

 extragalactic 
point sources

Galactic free–free

extragalactic free–free

21 cm

Cf (ℓ, ν, ν′￼) = A ( 1000
ℓ )

β ( ν2
f

νν′￼)
2α

exp (− ln2(ν/ν′￼)
2ξ2 )



•Frequency range: 100–200 MHz (relevant for Epoch of Reionization studies) 

•Brightness model: power-law dependence with spatially varying amplitude and spectral index 

•Output: a data cube Tb (ν,x,y) representing the brightness temperature in Kelvin

TGaussian(ν, x, y) = A(x, y)( ν
150MHz )

α(x,y)
The emission spectrum follows a power law:

- The amplitude map  follows a Gaussian distribution  

- The spectral index  varies spatially around a mean of -2.8 , as seen in real 
synchrotron dominated sky surveys

A(x, y)

α(x, y)

Case I: a random fluctuations 
Tsync(ν, n̂) = T408(n̂)( νH

ν )
α(n̂)

+TGaussian(ν, n̂)



Temperature maps



Flat angular power spectra (like shot noise)  



Extrapolate Haslam 408 MHz to … 
Tsync(ν, n̂) = T408(n̂)( νH

ν )
α(n̂)

+TGaussian(ν, n̂)

•project Haslam map to a flat sky



Extrapolate Haslam 408 to … 
Tsync(ν, n̂) = T408(n̂)( νH

ν )
α(n̂)

+TGaussian(ν, n̂)

•project a small region to a flat 
patch (e.g.,  )20∘ × 20∘



Tsync(ν, n̂) = T408(n̂)( νH

ν )
α(n̂)

α = − 2.8 + G(0, σα) we assume σα = 0.01

Alternatively, using a “spatially‑varying” -map (e.g. from Planck or simulations)α



Blind foreground subtraction
• LOS fitting: choose ad-hoc smooth functions. Usually polynomial fitting in log-log space. 

• PCA: uncorrelated sources maximizing the variance. Diagonalize  covariance and 
subtract principal eigenvectors. 

• ICA: independent sources maximizing the variance. Find independent sources by maximizing 
non-Gaussianity. 

• GPR: Bayesian regression with smoothness priors; Learn smooth foreground functions per 
line-of-sight via a kernel

ν − ν′￼

(See also: Gleser et al. 2008, Liu et al. 2009, Ricciardi et al., 2010, Harker et al. 2009, 
Hyvärinen et al. 1999, Chapman et al. 2012, Wolz et al. 2013, Chapman et al. 2013)

• Issues: 
- Mode mixing of angular and frequency fluctuations by frequency-dependent baselines (esp. 
interferometers); gain fluctuations… 
- Robustness biasing introduced if foreground model poorly understood (esp. non-Gaussianities) 
although excellent results.  
- Statistical optimality need to keep track of transformations on statistics, for optimal estimation



Polynomial Fitting in Log-Log Space
Fit and subtract smooth astrophysical foregrounds from frequency spectra using a 
polynomial model in log-log space, taking advantage of the fact that:

ln T(ν, n̂) = a*(n̂) + a1(n̂)ln (ν/ν*) + 1
2 a2(n̂)[ln (ν/ν*)]2 + …

Given data: 

Brightness temperature:  in Kelvin 

Frequencies: - Choose a reference frequency  

Define: ,   

a power law (up to the 1st order):  ; a straight 
line in log-log space 

T(ν)

νi ∈ [νmin , νmax ] ν0

xi = ln(νi/ν0) yi = ln T (νi)
T(ν) = T0 (ν/ν0)α ⇒ yi = ln T0 + α ⋅ xi



Generalize to a Polynomial
To model spectral curvature, generalize the model to a polynomial: 

 

This models: 

• Smooth foregrounds 

• Pixel-by-pixel spectral index variations 

• Higher-order spectral curvature

yi = ln T (νi) ≈
n

∑
k=0

ck ⋅ xk
i



Least-Squares Fit Using Vandermonde Matrix

V =

xn−1
1 xn−2

1 ⋯ x1
1 1

xn−1
2 xn−2

2 ⋯ x1
2 1

⋮ ⋮ ⋮ ⋮
xn−1

Nν
xn−2

Nν
⋯ x1

Nν
1

•Solve for the linear equation   

•best-fit coefficients (solve for the the linear system): 

VNν×nCn×N = Ynν×N

C = (V⊤V)−1 V⊤ ⋅ Y = V†Y

n for the n-th coefficient

C =

cn−1, 1 cn−1, 2 ⋯ cn−1, N
cn−2, 1 cn−2, 2 ⋯ cn−2, N

⋮ ⋮ ⋮
c1, 1 c1, 2 ⋯ c1, N
c0, 1 c0, 2 ⋯ c0, N

Y =

y1,1 y1,2 ⋯ y1,N
y2,1 y2,2 ⋯ y2,N

⋮ ⋮ ⋮
yNν,1 yNν,2 ⋯ yNν,N

xi = ln(νi/ν0)



Reconstruct and Subtract
1. Evaluate the fitted model: 

 

2. Subtract to get residuals (see residuals amplitude): 

̂Y = V ⋅ C ⇒ ̂T(ν) = exp( ̂y )

Tresid(ν) = Tobs(ν) − ̂T(ν)



Residuals along LOS



Simulating a Toy 21cm Data Cube with 
Random Image Rotations

•Generate a mock 3D 21 cm data cube by treating a 2D image as a spatial slice and 
simulating redshift evolution via random rotations along the frequency axis

•  More realistic case: run 21cmFAST (https://21cmfast.readthedocs.io)

https://21cmfast.readthedocs.io


Adding EoR to data cube…
true

Pearson correlation coefficient r=0.95



Foreground Removal via Singular Value 
Decomposition (SVD) 
Why Use SVD for Foreground Removal? 

- Foregrounds are spectrally smooth, but not strictly power-law 

- Polynomial fits require a predefined functional form 

- This smoothness means foreground spectra occupy a low-dimensional 
subspace in frequency space 

- Foregrounds dominate the largest coherent structures in the data matrix 

- SVD makes no assumptions on the functional basis

→ Let the data define its own foreground basis!



What’s Singular Value Decomposition  
SVD is a fundamental matrix factorization technique that expresses any 
real matrix  as a product of three matrices:A

- general matrix 

-  — orthonormal columns ("left singular vectors") 

- — diagonal matrix with non-negative singular values 
in descending order 

- — orthonormal columns ("right singular vectors")

A ∈ ℝm×n

U ∈ ℝm×m

Σ ∈ ℝm×n

V ∈ ℝn×n

•SVD decomposes data into orthogonal modes ranked by importance 

•The singular values in  tell us how much variance each mode explainsΣ



SVD for Beginners – Decomposing a 2D Map
Let's say we have a 2D data map:  

We can apply SVD:  

A ∈ ℝNy×Nx

A = UΣV⊤ = ∑
k=1

σk ⋅ ukv⊤
k

•  contains vertical patterns (left singular vectors) 

•  contains horizontal patterns (right singular vectors) 

•  contains strengths (singular values) of each mode

U

VT

Σ



SVD of 2D Map — Modes & Eigenvalues

•Each mode map is a rank-1 matrix:  

•Reconstruct Map from SVD Modes:  

•Each mode map  captures one pattern in the data

A(k) = σk ⋅ ukv⊤
k

A ≈
r

∑
k=1

σk ⋅ ukv⊤
k

A(k)



SVD of 2D Map — Modes & Eigenvalues



What Does SVD Do?
- The largest singular values correspond to modes that explain the most variance-dominated 

by foregrounds 

- These dominant modes form a low-rank approximation of the foreground contamination

•By selecting the first  modes (largest singular values), we isolate the foreground subspace: 
 

•Projecting the data orthogonally to this subspace:  

•This removes the smooth foreground components, leaving behind the residuals, including the 
cosmological 21cm signal and noise

k
Ufg = U[: , : k]

Aclean = (I − UfgU⊤
fg) A



Data Cube Setup

cut k ≲ 5

Reshape the 3D cube to a 2D matrix: , where  

Apply Singular Value Decomposition:    

A ∈ ℝNν×Npix Npix = Nx × Ny

A = UΣV⊤

Σ =

σ1
σ2

⋱
σr

(σ1 ≥ σ2 ≥ … ≥ σr ≥ 0)



- Foregrounds lie in a low-dimensional subspace:  

- Keep only  dominant modes foreground modes: 

 

- Cleaned data = projection orthogonal to foreground space: 

k ⇒

Afg =
k

∑
i=1

σiuiv⊤
i

Aclean = (I − UkU⊤
k )A





Adding EoR to data cube…

 Pearson correlation 
coefficient r=0.96 (k=3)
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dependence is known to vary across the sky. This occurs both be-
cause the synchrotron spectral index β depends on the energy distri-
bution of relativistic electrons (85), which varies somewhat across
the sky, and also because the ratio of synchrotron to dust and other
emission components can vary from place to place. In contrast,
equation (2) assumes that a map of Galactic emission looks the
same at all frequencies except for an overall change in amplitude.

3.2.2 Polynomial and spline fitting

Now that so much data is available, it is tempting to allow much
more general fitting functions such as polynomials or cubic splines.
We tested both of these approaches here and found that they gave
their most accurate results when fitting in log-log (when fitting lg T
as a function of lg ν rather than using T and/or ν directly), since the
function to be fit is then rather smooth – see Figure 3 (top panel).
For instance, the quadratic polynomial fit

ln T (̂ri, ν) = α(̂ri) + β(̂r) ln
ν
ν∗

+ γ(̂ri)
(
ln

ν
ν∗

)2

(3)

generalizes equation (1) to a position-dependent “running” γ of the
spectral index β. For a given pixel i, let mi denote the number of
surveys that have observed it (6 ! mi ! 11). Re-writing equa-
tion (3) in a matrix form, we obtain

y = Ax + n, (4)

where y is an mi-dimensional vector that contains (the logarithm
of) the temperatures at the ith pixel at the mi survey frequencies,
A is anmi × 3matrix that encodes the frequency dependence, and
x is a 3-dimensional vector that contains the α, β and γ values at
the ith pixel. The extra term n denotes noise in the broadest sense
of the word, i.e., receiver noise, uncorrected offsets and calibration
errors, and any other systematic effects or other non-sky signals
present in the survey maps. This is an overdetermined system of
linear equations since we always have mi > 3 input maps avail-
able, and assuming that the noise has zero mean, i.e., 〈n〉 = 0, the
minimum-variance estimator for x is

x̂ =
[
A

t
N

−1
A

]
−1

A
t
N

−1
y, (5)

with covariance matrix

Σ =
[
A

T
N

−1
A

]
−1

, (6)

whereN is the noise covariance matrix 〈nnt〉. In Figure 3, we have
simply approximated N by the diagonal matrix with Nii given by
the rms of the ith map (we find the recovered maps to be rather
insensitive to the choice of N). By performing this calculation for
all the pixels in the sky, we obtain all-sky maps of the quantities α,
β and γ. Finally, to obtain a sky map at any frequency ν, we simply
use these values of α, β and γ in equation (3).

We also tried the approach of fitting the (log-log) frequency
dependence in each pixel to a separate cubic spline. This involves
even more fitting parameters (between 6 and 11), as the resulting
curve is forced to match the data exactly at all observed frequen-
cies. Maps of α, β and γ can then be produced by computing the
first and second derivatives of the spline function.

Figure 3 illustrates the pros and cons of the above-mentioned
methods. Both the simple power law and the log-log quadratic poly-
nomial are seen to provide poor fits simply because the physics is
more complex than these functions can model. The figure shows
that a power law is a poor approximation even in the synchrotron-
dominated regime ν ∼

> 1 GHz, because of a distinct steepening
of the spectrum towards higher frequencies. However, the figure

Figure 4. The eigenvalues λi/11 for the 11 principal components, which
can be interpreted as the fraction of the total variance at the 11 frequencies
that each component explains.

shows that going to the opposite extreme and allowing too many fit-
ting parameters causes problems as well, from overfitting the data.
The spline blindly goes through all the data points without any re-
gard for what constitutes physically reasonable behavior, and sure
enough is seen to perform poorly when forced to extrapolate. The
ability to extrapolate reliably is crucial to our sky model because
many of our input maps have only partial sky coverage. A related
drawback of the spline approach is that if one of the input maps has
more noise or systematic errors than others, this will fully propa-
gate into the model rather than getting “voted down” by the other
input maps.

A final problem, seem most clearly in the bottom panel, is
caused by fitting the log of the temperature rather than the tempera-
ture itself: a relatively modest error in the predicted log-temperature
translates into an exponentially amplified error in the temperature
itself. The logarithmic fitting also complicates the modeling of
measurement errors: if they are symmetrically distributed around
zero and uncorrelated with the sky signal in the raw input maps, this
is no longer true for the log-maps. In contrast, a linear combination
of the linear input maps would preserve such desirable statistical
properties of the noise.

3.2.3 Principal Component Analysis

The above examples suggest that we should try a method that: (1)
can fit the spectral behavior of the data with as few parameters as
possible; and (2) is linear (takes some linear combination of the raw
input maps). In other words, we want a linear fitting method where
the data itself is allowed to select the optimal parametrized form
for the frequency dependence. Fortunately, the standard tool known
as Principal Component Analysis (PCA) does exactly this (92). In-
deed, we find that PCA performs better than all the approaches tried
above when we implement it as described below.

c© 2008 RAS, MNRAS 000, 1–16
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Figure 6. The first three principal components, which can be crudely in-
terpreted as maps of total “stuff” (top), synchrotron fraction (middle) and
thermal dust fraction of non-synchrotron emission (bottom). The color scale
corresponds to lg(T/1K) in the top panel, and sinh−1(T/1K)/ ln 10 in
the other panels to handle negative values (since sinh−1 x/ ln 10 ≈ lg |x|
for x " 1 and for large positive and negative values, while it is roughly
linear near zero).

another 19%, the third explains another 0.6%, and all the remain-
ing eight components combined explain merely the last 0.3%. This
is very convenient: we set out searching for a way to accurately
parametrize the frequency dependence of the radio sky with as few
parameters as possible, and have found that as few as two parame-
ters capture more than 99% of the information.

Although principal component analysis is quite a standard
data analysis technique (92), our analysis also includes some non-
standard procedures, tailored for the particular challenges that our
global sky modeling problem poses:

• We diagonalize R rather thanC.
• We perform no mean removal.
• We make up for missing data by fitting to only the best princi-

pal components.

• We perform frequency interpolation by splining lg σi and the
component spectra.

Let us now explain each of these procedures in more detail.
Diagonalizing R rather than C corresponds to using the nor-

malized maps rather than the raw maps as input for the PCA. We
made this choice because we are equally interested in providing a
good fit (in terms of percent of rms explained) at all 11 frequen-
cies. If one took the raw maps as input, the PCA would instead
focus almost entirely on optimizing the fit to the lowest frequency
maps, since the increase of synchrotron temperature towards lower
frequencies causes them to have by far the largest rms signal mea-
sured in Kelvin. This usage of the normalized maps also has the
advantage that the spectra of the dominant physical components
become rather gently varying functions of frequency, which makes
them much easier to linearly fit (see Figure 5). This eliminates the
need for logarithmic fits and their above-mentioned problems.

In a standard PCA, one diagonalizes the covariance matrix
〈(z − 〈z〉)(z − 〈z〉)t〉. We instead diagonalize the matrix 〈zzt〉,
i.e., do not subtract off the mean from the normalized maps before
computing their second moment matrix. This is because, as quan-
tified in Section 4, this procedure makes the method more accurate
in regions with incomplete data: whereas the principal components
from the region with 11 frequency data work well across the en-
tire sky (basically, because they reflect underlying physical emis-
sion mechanisms which are the same everywhere), the 11 mean va-
lues from this region are not at all representative for other regions,
as they depend strongly on Galactic latitude. By not removing the
mean, we also exploit the physical property that none of the dom-
inant foreground components can ever contribute a negative inten-
sity5.

Whereas a standard PCA can be performed in the region
shown in Figure 2 where all 11 frequencies have been observed,
we wish to build a global sky model covering the entire sky. For-
tunately, we have mi ! 6 measured frequencies available every-
where, and have found that much fewer than 6 parameters are re-
quired for an excellent fit. We therefore take the best m∗ principal
components determined in the region with complete data and fit
them to the data available. In Section 4 we will explore what is
the best choice of m∗ by quantifying the accuracy attained using
1 " m∗ " 5 components. We perform this fitting by modeling the
observed data in a pixel withmi observed frequencies as

zi = P̃iãi + ni, (14)

where the tildes indicate that we are truncating to only m∗ compo-
nents: P̃i is the mi × m∗-dimensional matrix containing the m∗

first principal components as its columns, ãi is them∗-dimensional
vector corresponding to the firstm∗ principal component maps (see
Figure 5), zi contains themi normalized input maps that have data
for this pixel, and the residual ni models random noise from both
measurement errors and additional principal components not in-
cluded in the fit. We perform this fitting separately for each pixel i
by minimizing

χ2 ≡ (zi − P̃iãi)
t
N

−1
i (zi − P̃iãi), (15)

which gives the solution

5 The only sky signal with a non-CMB spectrum that can give a negative
temperature contribution is the thermal SZ effect, and it makes a rather neg-
ligible contribution compared to the synchrotron, free-free and dust compo-
nents.

c© 2008 RAS, MNRAS 000, 1–16

The first three principal components, which can be 
crudely interpreted as maps of total “stuff”, 
synchrotron fraction and thermal dust fraction.

~99.9% of the power is the in 
first three components

PCA/SVD method
Cνν′￼

= UΛUT



Blind Source Separation for Foreground Removal

XNν×Npix
=

F1(ν1) F2(ν1)
F1(ν2) F2(ν2)

⋮ ⋮
F1(νNν

) F2(νNν
)

ANν×2

(
sF1,1 sF1,2 ⋯ sF1,Npix

sF2,1 sF2,2 ⋯ sF2,Npix)
S2×Npix

A two-component 
foreground mixing model: 

In 21 cm experiments, the observed brightness temperature cube T(ν,x) contains: 

•Bright foregrounds: galactic synchrotron, free-free emission,… 

•Faint EoR signal: highly fluctuating in frequency, spatially random 

• Instrumental noise

These are mixed together in the observed data, with no labels.



FastICA for Foreground Removal

 

- : observed data (e.g., frequency × pixel matrix) 

- A: unknown mixing matrix; frequency dependence for each component 

- S: unknown independent sources (  foregrounds) 

- N: noise 

X = AS + N

X

sF1,1, sF2,2

Goal: Recover S without knowing A

Fast Independent Component Analysis (FastICA) helps by separating statistically 
independent components based on their non-Gaussianity:  

•Foregrounds: spectrally smooth, large-scale coherent patterns 

•21 cm signal: spectrally fluctuating, nearly Gaussian-like, spatially incoherent



Core Principles of FastICA
•Central Limit Theorem: 
A sum of independent variables is more Gaussian than the original variables. 

•To find sources, look for projections that are maximally non-Gaussian. 

•Measure of Non-Gaussianity: Kurtosis, Neg-entropy, … 

•FastICA (Hyvärinen, 1999) can find an unmixing matrix W such that: Y=WX=WAS≈S

Advantages for 21cm Signal Recovery: 

•Model-free: no need to assume specific foreground spectra 

•Efficient: much faster than iterative optimization or MCMC methods 

•project out foregrounds by removing strongest independent components, leaving 
residuals that contain EoR + noise



FastICA: Whitening → Optimization → Extraction
1. SVD whitening: 
Transform the centered data to make components uncorrelated with unit variance  

• ，  

2. Iterative Optimization: 

• Find weight vector  that maximizes non-Gaussianity of projection : 

•  

•  : non-linear function (e.g.,  ) 

•  : average over all data samples (pixels):  

• Normalize  and repeat until convergence 

3. Extract Independent Components 

• S=WZ.  Rows of S statistically independent components

Xc = UΣVT, Z = Σ−1UTXc Cov(Z) = I

w wTZ

wnew ← 𝔼 [Z ⋅ g (wTZ)] − 𝔼 [g′￼(wTZ)] ⋅ w

g(u) tanh(u), u3

𝔼[ ⋅ ] 𝔼[ f(z)] =
1
Np

Np

∑
j=1

f (zj)
wnew



ICA on 3D Foreground Data Cube (n_comp=4)
FastICA solves for statistically independent sources, but: 

• There’s no natural order (like variance in PCA) 

• ICA doesn’t rank components   

• The output depends on initial conditions  

• Each component can flip sign

true



ICA on 3D Foreground Data Cube

true residuals ~ 10−5K
 residuals 

 residuals 

Mixing matrix 



ICA on 3D Foreground Data Cube (n_comp=2)

true

Mixing matrix 

 residuals residuals ~ 10−2K



Adding EoR to data cube…

n_comp=3, r=0.93

Mixing matrix 



Adding EoR to data cube…

n_comp=4, r=0.86

Mixing matrix 

• Choosing the number of components in ICA is a 
critical and non-trivial decision 

• Choose the smallest n_c after which residuals stop 
improving significantly
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Figure 5. In the top panel we show the four columns of the mix-
ing matrix representing the four ICs. The brightness temperatures
of the foreground contributions along a random line of sight are
shown in the bottom panel. We see that the ICs are each a scaled
mixture of the foreground contributions.

4 RESULTS

4.1 The Independent Components

The top panel of Fig. 5 shows the four ICs found by fastica
for a clean data cube. These ICs are the columns of the
mixing matrix, A. For comparison we show the line of sight
�Tb of the simulated foreground contributions in the bottom
panel of Fig. 5.

We can see that no single component corresponds to
any one single foreground contribution, even when process-
ing a clean data cube. Instead, the components are all a
mixture. While in ICs 2 and 4 the presence of Galactic syn-
chrotron is obvious, in the other components the combina-
tion of the contributions is not so clear. It is also worth
noting that while IC4 shows a significant contribution from
Galactic synchrotron, it is inverted. fastica can only deter-
mine the ICs up to a multiplicative constant and so the sign
and magnitude of the components are irrelevant.

The coe�cients of the ICs are stored in the matrix s
and are presented in Fig. 6, Fig. 7, Fig. 8 and Fig. 9. We
can compare these coe�cients to the maps of the foreground
contributions, Fig. 10, Fig. 11 and Fig. 12. We see that all
four coe�cients are a mixture of the contributions as ex-
pected.

4.2 Fitting Errors and Variance

We will first discuss the fastica results on the simulation
where the data cube has been convolved with the PSF, the
data processing is carried out in real space and four ICs
are assumed. The word ‘simulated’ is used to refer to the
input maps and ‘reconstructed’ is used for the estimates
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Figure 6. The first coe�cient map of the ICs when fastica
processes the clean data cube.
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Figure 7. The second coe�cient map of the ICs when fastica
processes the clean data cube.
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Figure 8. The third coe�cient map of the ICs when fastica
processes the clean data cube.
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Figure 8. The third coe�cient map of the ICs when fastica
processes the clean data cube.
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tion of the contributions is not so clear. It is also worth
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Figure 8. The third coe�cient map of the ICs when fastica
processes the clean data cube.
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Figure 9. The fourth coe�cient map of the ICs when fastica
processes the clean data cube.
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Figure 10. The simulated extragalactic foregrounds at 150 MHz.

resulting from fastica. The total input signal is separated
into reconstructed foregrounds and residuals. The residuals
are the di↵erence between the original mixed signal and the
reconstructed foregrounds.

To evaluate the accuracy of the foreground fitting by
fastica, we calculated the foreground fitting error, Equa-
tion 18, for each pixel.

fitting error =
fgreconstructed � fgsimulated

fgsimulated

⇥ 100.0 (18)

In Fig. 13 we plot the Pearson correlation coe�cient
between the foreground fitting errors and foregrounds (top)
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Figure 11. The simulated Galactic synchrotron foregrounds at
150 MHz.
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Figure 12. The simulated Galactic free-free foregrounds at 150
MHz.
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Figure 15. The variance across the simulated (red; dash) and
reconstructed 21-cm maps (blue; solid) for the fiducial data and
data which has had Fourier filtering of modes below 2,3 and 5
PSF scales (in reading order).
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Figure 16. The reconstructed 21-cm signal at 150 MHz for dirty
data. We see that while there is a strong correlation between the
large scale structure in this image and the original signal, Fig.
2, there is also a large amount of excess small scale structure,
probably due to noise leakage into the foregrounds.

4.2.1 Varying the Number of ICs

The fastica algorithm requires specification of the number
of ICs to be used in the reconstructed foreground model.
Though we have modelled the various foreground contribu-
tions, it is not a trivial task to determine how these depend
on each other and to what degree. To test the sensitivity of
our results to the number of ICs chosen we calculate the rms
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Figure 17. The rms error of the 4 IC reconstructed foregrounds
for when all pixels are considered (blue;dash) and when only
the middle 68 per cent of the error distribution is included
(blue;solid). Also, the rms errors of the reconstructed foregrounds
for fastica applied according to models with 2 (red; dot) and 6
(black; dashdot) ICs, with only the middle 68 per cent of the error
distribution included.
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Figure 18. The variance across the simulated (red; dash) and
reconstructed maps at each frequency, for the fastica algorithm
run with the assumption of 2 (black; dot), 4 (blue; solid) and 6
(pink; dot dash) ICs. The data has been Fourier filtered at the 5
PSF scale.

error and variance recovery for IC numbers of 2, 4 and 6 in
Fig. 17 and Fig. 18.

We see that small variations in the number of ICs does
not endanger the statistical recovery of the 21-cm signal. For
the remainder of this paper, four ICs are assumed.
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Figure 2. The 21-cm signal at 150 MHz, convolved with the
PSF. The signal is entirely in emission - this map has been ad-
justed to have a mean of zero to reflect the observations of an
interferometer.

3.4 Dirty Images

The success of an interferometer such as LOFAR is highly
dependent on how uv space is sampled. The particular pat-
tern of uv sampling forms a beam which a↵ects how the
components such as the foregrounds are seen by the inter-
ferometer. Dirty images were simulated by convolving with
the PSF of the LOFAR set up used to simulate the noise in
the previous section, Fig. 2 and Fig. 3.

The PSF used for creating dirty images (and for cre-
ating the noise as described in the previous section) was
chosen to be the worst in the observation bandwidth - i.e.
the PSF at 115 MHz. In observations the synthesized beam
decreases in size with increasing frequency, causing point
source signals to oscillate with the beam, producing a fore-
ground signal with an oscillatory signal very much like that
of the 21-cm signal. However, this mode-mixing contribu-
tion has been found not to threaten the 21-cm recovery and
have a power well below the 21-cm level (Bowman et al.
2006; Liu, Tegmark & Zaldarriaga 2009). As such we leave
the consideration of a frequency dependent PSF to a future
paper.

Once the foregrounds and 21-cm signal have been ad-
justed for uv sampling, the three component cubes are added
together. The components of the total �Tb along a random
line of sight are shown in Fig. 4.

3.5 Fourier Transformed Data

The fastica method was implemented separately with data
both in real and Fourier space. For the latter method, the
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Figure 3. The total contribution of the simulated foregrounds at
150 MHz, convolved with the PSF.
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Figure 4. The redshift evolution of the simulated cosmological
signal (red; dash dot), foregrounds (pink;solid), noise (blue; dash)
and total combined signal (black; dot). All components have un-
dergone the PSF convolution. Note the 21-cm signal has been
amplified by 10 and displaced by -1K for clarity.

fiducial image cube was 2D Fourier transformed at each fre-
quency to create a Fourier data cube. The complete cube was
then processed with fastica and the output reverse Fourier
transformed to obtain the ICs in real space. Unless otherwise
stated all results refer to real space implementation.
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ferometer. Dirty images were simulated by convolving with
the PSF of the LOFAR set up used to simulate the noise in
the previous section, Fig. 2 and Fig. 3.

The PSF used for creating dirty images (and for cre-
ating the noise as described in the previous section) was
chosen to be the worst in the observation bandwidth - i.e.
the PSF at 115 MHz. In observations the synthesized beam
decreases in size with increasing frequency, causing point
source signals to oscillate with the beam, producing a fore-
ground signal with an oscillatory signal very much like that
of the 21-cm signal. However, this mode-mixing contribu-
tion has been found not to threaten the 21-cm recovery and
have a power well below the 21-cm level (Bowman et al.
2006; Liu, Tegmark & Zaldarriaga 2009). As such we leave
the consideration of a frequency dependent PSF to a future
paper.

Once the foregrounds and 21-cm signal have been ad-
justed for uv sampling, the three component cubes are added
together. The components of the total �Tb along a random
line of sight are shown in Fig. 4.
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quency to create a Fourier data cube. The complete cube was
then processed with fastica and the output reverse Fourier
transformed to obtain the ICs in real space. Unless otherwise
stated all results refer to real space implementation.
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Karhunen–Loève Transformation for foreground removal 

• Generalization of PCA/SVD 

• Extract 21 cm signal from bright foregrounds rather than just removing high-variance 
foreground modes 

• KL Basis: Eigenfunctions that jointly diagonalize signal and foreground covariance  

• Lead to KL modes ranked by signal-to-foreground ratio 

• large S/F modes preserve 21cm signal

KL transform is optimal if covariance S and F  is accurately known!



KL Generalized Eigenvalue Problem in Frequency Space
Given: 

• Signal and foreground covariance: ,   

• Jointly diagonalize both matrices (eigenvalue problem) :  

This gives: 

•  : foreground-to-signal ratio for mode  

•  : KL eigen-mode

Cs = ⟨ssT⟩ Cf = ⟨ffT⟩

Cfei = λiCsei

λi i

ei

Interpretation:   

•Modes with small  are signal-rich, foreground-poor 

•Modes with large  are foreground-dominated

F/S =
eT

i Cfei

eT
i Csei

= λi

λi

λi



Implementation in 21cm Analysis
•  : modeled from simulations of EoR signal (Gaussian, isotropic) 

•  : from astrophysical foreground models (e.g., correlated synchrotron model) 

• Modeled analytically as , 

Cs

Cf

[Cf]ν,ν′￼
∝ ( νν′￼

ν2
0 )

−α

exp (− ln2(ν/ν′￼)
2ξ2 ) [Cs]ν,ν′￼

= As exp (− (ν − ν′￼)2

2σ2
ν )

Transforming the Data: 

•Given observed spectrum , we project onto KL basis:  
(KL coefficient for mode ) 

•
To reconstruct a cleaned signal: 

x ∈ ℝNν yi = eT
i x

i
xclean = ∑

λi<λcut

yiei



KL on 3D Foreground Data Cube

• If eigenvalues are well separated (large gaps), the eigenvectors and eigenvalues are stable 
under small perturbations 

• The cleaned data cube is less sensitive to model uncertainties in  and Cs Cf

signal rich region 



Last 5 KL Component Maps (Fg rich)

•These modes have the highest foreground-to-
signal ratios and primarily capture foreground 
contamination.



Adding EoR to data cube…
Pearson correlation coefficient =0.95

n_comp = 95

•Despite inaccuracies in the signal 
model, the KL method can still 
recover the signal effectively



Adding noise to data cube…
•If noise covariance is known, KL can optimally separate signal, 
foreground, and noise—enhancing noise rejection and signal recovery.

• Form the Total Noise + Foreground Covariance: 

•  

• Solve Generalized Eigenvalue Problem: 

•  

• This finds eigenmodes that optimally separate signal from combined foreground + noise. 

• Project data onto eigenmodes and filter modes with large  (foreground + noise dominated) 
to clean the signal.

Cb = Cf + Cn

Cbe = λCse

λ



Gaussian Process Regression (GPR) for 
21 cm Foreground Subtraction
Intuition:
• Think of a Gaussian Process as an infinite collection of correlated Gaussian 

random variables, one for each value of . 

• For any set of input points , the vector: 

 is jointly Gaussian-distributed with:  

Mean = , Covariance  

• Foregrounds vary smoothly with frequency and the kernel  can capture this 
smoothness 

ν

{ν1, ν2, …, νn}

[f (ν1), f (ν2), …, f (νn)]
μ(ν) = K (νi, νj)

K



Gaussian Process Regression (GPR) for 
21 cm Foreground Subtraction
What is GPR? 

• GPR is a Bayesian, non-parametric regression method for modeling smooth functions 

• Models functions as distributions over smooth curves:  

• Uses a kernel function  to define correlations between data points (e.g., between frequencies) 

• Covariance : kernel encodes smoothness 

• Outputs both a mean prediction (foreground model) and uncertainty

f(ν) ∼ GP (μ, K (ν, ν′￼))
K

K (ν, ν′￼)



GPR Kernel Choice – RBF vs. Matérn
• RBF (Squared Exponential) Kernel：  

- Infinitely differentiable (very smooth) 

- Can over-smooth and remove real 21 cm signal (especially low- ) 

•
Matérn Kernel：  

- v=1.5 : , v=0.5: 

KRBF (ν, ν′￼) = σ2
f exp (−

(ν − ν′￼)2

2ℓ2 )

k∥

KMatern (ν, ν′￼) = σ2
f ⋅

21−ν

Γ(ν)

2ν ν − ν′￼

ℓ

ν

Kν
2ν ν − ν′￼

ℓ

K (ν, ν′￼) = σ2
f (1 +

3r
ℓ ) exp (−

3r
ℓ ) K (ν, ν′￼) = σ2

f exp (−
r
ℓ )

• For a dataset  observed at inputs , the  marginal likelihood is:

 

• This acts as an objective function for hyperparameter optimization

y X log
log p(y ∣ X, θ) = −

1
2

y⊤K−1y −
1
2

log |K | −
n
2

log(2π)





Machine learning GPR 

21cm training

2311.05364



https://sheffieldml.github.io/GPy/

Gaussian process regression on LOFAR

Hothi 2020

GPR performs better



In a realistic situtation…



Challenge: frequency-dependent PSF  
 mode-mixing  non-smooth FG spectrum  → →

PSF side loebs



Compact sources detected for subtraction —DOTSS-21 team 

Iteratively subtract point sources and refine the FG model

very massive!



All FG cleaning algorithms are 
valid if no instrumental effects!

However…



Real-world Challenges:

uv coverage PSF(v)/PSF(106 MHz)

• “Mode-mixing” breaks the smoothing and prevents foreground removal 

• “Mode-mixing” producing non-smooth FG spectrum  

• PSF deconvolution  — an ill-posed inverse problem; achieving the desired precision of 1 in 

10,000 is not feasible



Real-world Challenge:
uv_PSF

Look along frequency 
direction…

frequency 
(LoS)

PSF varied with frequency, 
breaking down the smoothness 

dirty map

Mode-mixing 



Key Challenge: frequency-dependent PSF  
 mode-mixing  producing non-smooth FG spectrum  → →

• set up a point source on the sky 
without frequency dependence

• mode mixing: spatial modes mixed up 
with frequency modes 

• following interferometric observation, 
the spectrum undergoes an oscillation

random positions on 



Instrumental response (PSF) 
breaking down the smoothness:

SVD — eigenvalues  correlation coefficients  
(150x150) 

Mνν′￼

HI level

expected slope

Deduction of ~100 modes:
impractical and physically meaningless

natural weighting data



Mode mixing: 
leakage of foreground power into cosmological modes due to instrument effects 
→ contaminates high line-of-sight (k∥) modes where the 21 cm signal lives

Why It Happens: 

• Interferometer chromaticity 
Baseline length varies with frequency → beam changes with frequency 
Smooth-spectrum sources appear non-smooth after imaging 

•Calibration & imaging imperfections 
Bandpass errors, gridding, pixelization, wide-field distortions



Mode Mixing  from Frequency-Dependent PSFk⊥ → k∥

1. Point Source Sky Model
We assume a flat-spectrum point source at angular position I(ν, θ) = δ (θ − θ0)

2. Visibility from a Single Baseline b: 

  with:  V(ν) = ∫ d2θI(ν, θ)e−2πiuν⋅θ = e−2πiuν⋅θ0 , uν =
νb
c

3. Phase Evolution with Frequency  
•  central frequency
•
ν0
ν = ν0 + Δν V(ν) = e−2πi (ν0 + Δν)

c b⋅θ0 = e−2πi( ν0
c b ⋅ θ0) ⋅ e−2πi( Δν

c b ⋅ θ0)

•The 1st term is a constant; the 2nd term is a frequency-dependent phase.



4. Fourier Transform Over Frequency

Take 1D Fourier transform over frequency, over a bandwidth B

Ṽ(k∥) = ∫
ν0+B/2

ν0−B/2
dνe−2πi (ν − ν0)

c b⋅θ0e−2πiνk∥

= e−2πiν0k∥ ∫
+B/2

−B/2
dΔνe−2πi( Δν

c b ⋅ θ0 + Δνk∥)

= e−2πiν0k∥ ⋅ ∫
+B/2

−B/2
dΔνe−2πiΔν( b ⋅ θ0

c + k∥) ⇒ Ṽ (k∥) ∝ sinc [πB ( b ⋅ θ0

c
+ k∥)]

•A clear leakage of angular position into 
LOS Fourier modes 

•Even with a spectrally flat source, PSF 
variation introduces frequency structure 

The sinc is peaked at: k∥ = −
b ⋅ θ0

c



Mode‑mixing equation in real space:

Id(ν, x) = ∫ d2x′￼PSF (ν, x − x′￼) I (x′￼)

Assume I(x) has no dependence on ν

perform a Fourier transform along ν

Ĩd(x, τ) = ∫ dνId(x, ν)e−2πiντ = ∫ dν [∫ dx′￼PSF (ν, x − x′￼) ⋅ I (x′￼)] e−2πiντ

Swap the order of integration:

Ĩd(x, τ) = ∫ dx′￼I (x′￼) ⋅ [∫ dν PSF (ν, x − x′￼) ⋅ e−2πiντ]



Mode‑mixing equation in real space:
Define the delay-transformed PSF:

P̃SF(τ, x) = ∫ dν PSF(ν, x) ⋅ e−2πiντ

Then Ĩd(x, τ) = ∫ dx′￼̃PSF (τ, x − x′￼) ⋅ I (x′￼)
•the delay-transformed dirty image 
is a convolution of the sky with a 
delay-transformed PSF.



MNRAS 461, 3135–3144 (2016)

EOR window

Use the mapping from 
observing parameters to 
comoving k:

 ;  k∥ = 2π
rν

η k⊥ =
2π

D(z)
|u |



Thanks!

21 cm Cosmology
-Map the Cosmic Dawn & Reionization
-Trace neutral hydrogen over time
-Constrain dark matter, inflation, and structure formation

Foreground Challenges
-Foregrounds ≫ Signal:
-Spectrally smooth, but mode mixing leaks into signal modes
-Creates the EoR Wedge/Window

Foreground removal
-Avoidance, subtraction, and precise calibration

Summary



1. How would adding components like free-free emission or spectral curvature challenge the 
assumptions made by PCA, ICA, or polynomial fitting?  

2. If you simulate a data cube with point sources, synchrotron, and free-free emission, how would 
you evaluate which foreground removal method (PCA, ICA, GPR, KL) performs best?  

3. How can you design a test to quantify signal loss or foreground leakage when applying these 
methods to complex foreground models?

Questions:


