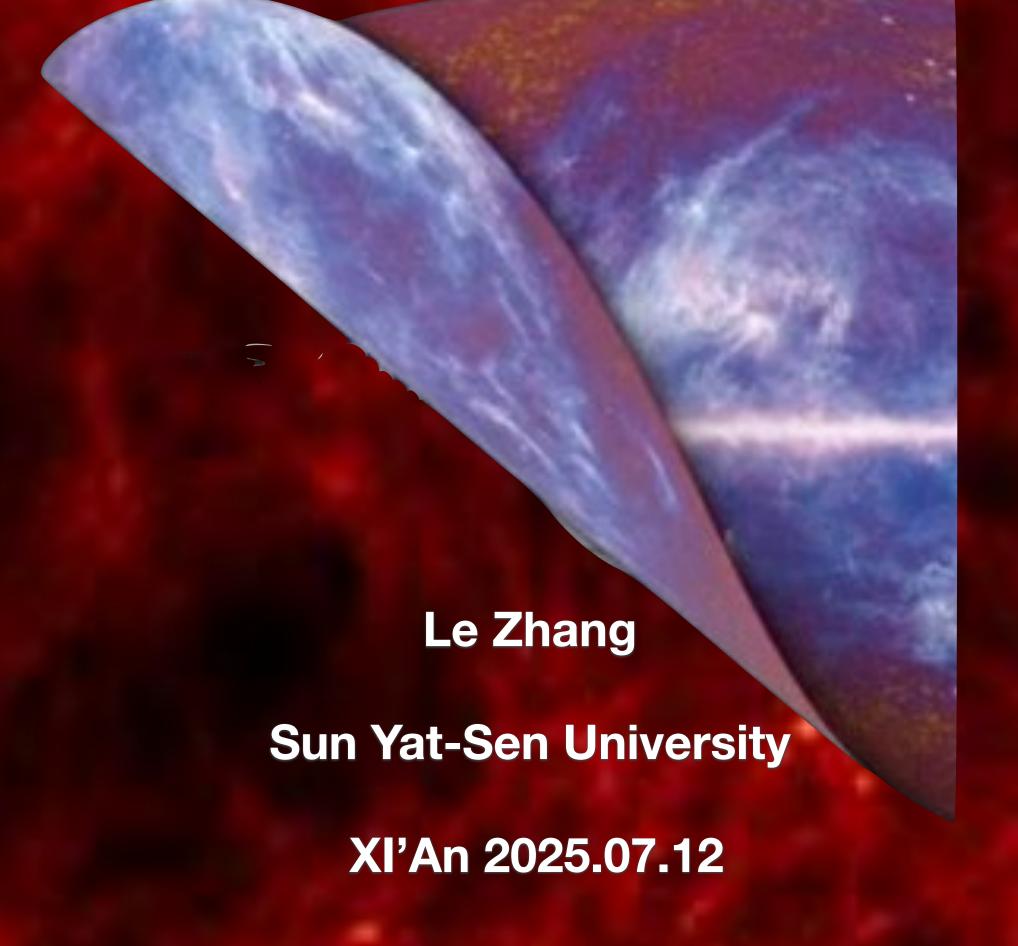
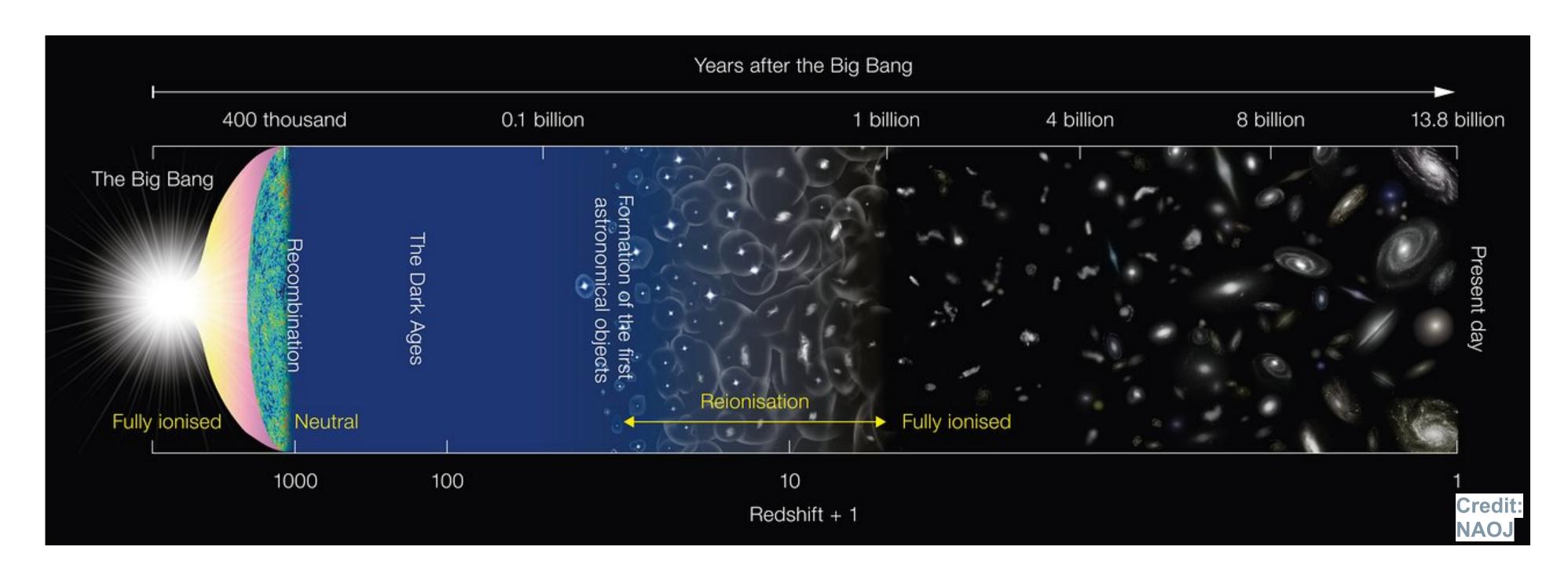


Foreground removal in 21 cm surveys

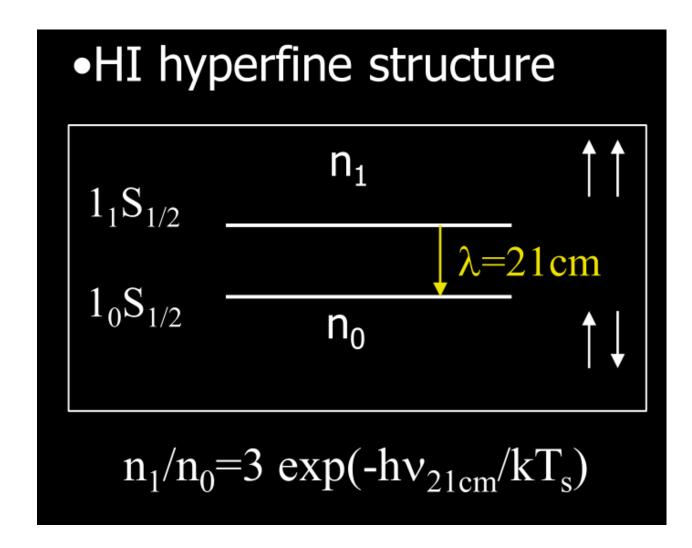


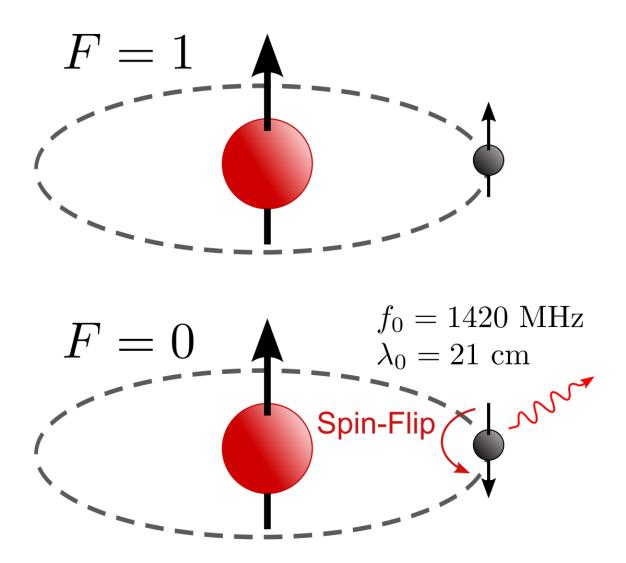
History of the Universe



- Dark Ages: No luminous star exists (z > 30)
- Cosmic Dawn: Emergence of the initial stars and galaxies (z ~ 20-30)
- Epoch of Reionization (EoR): UV photons from luminous objects ionize HI in the IGM (z ~ 6-15)

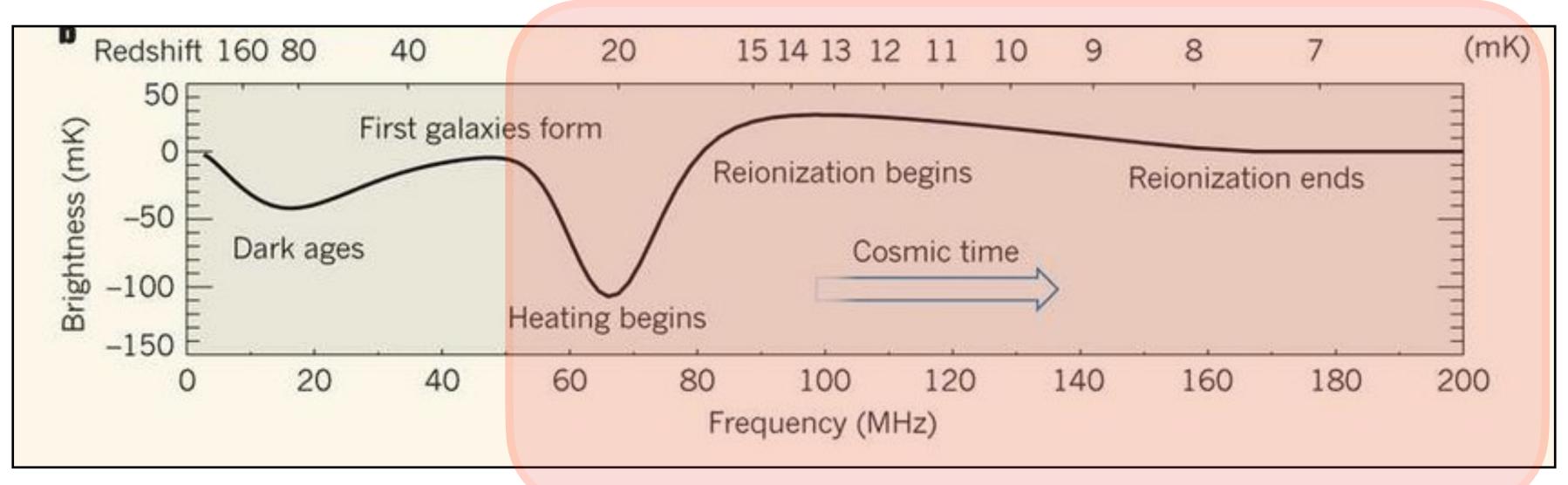
None of these have been detected !!!





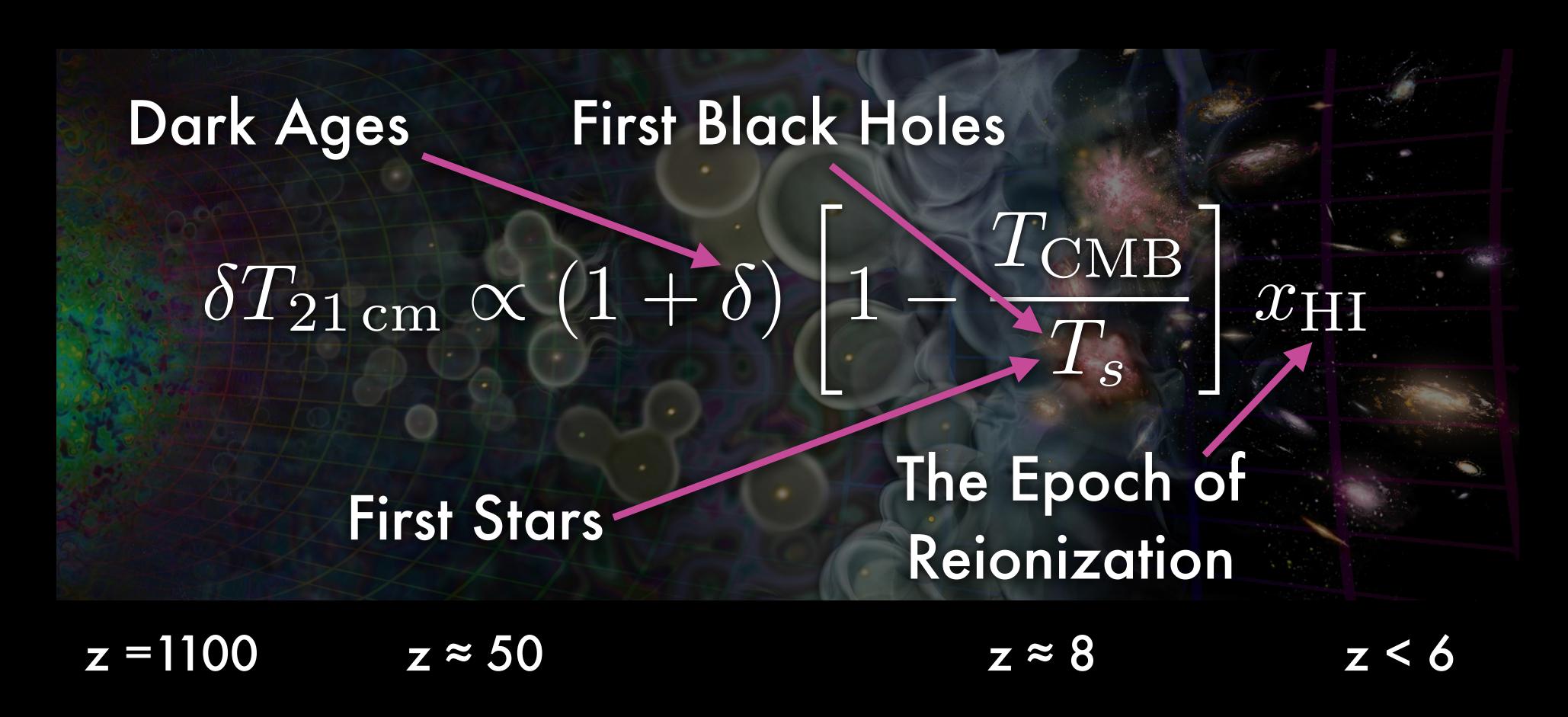
The only way to study this period:

Observing Neutral Hydrogen 21cm Radiation



- Exploring the First Billion Years
- Mapping the Structure of the Early Universe
- Witnessing Births and Deaths of First Stars
- Unraveling the Formation of Earliest Galaxies

Brightness temperature probes different physics at different times



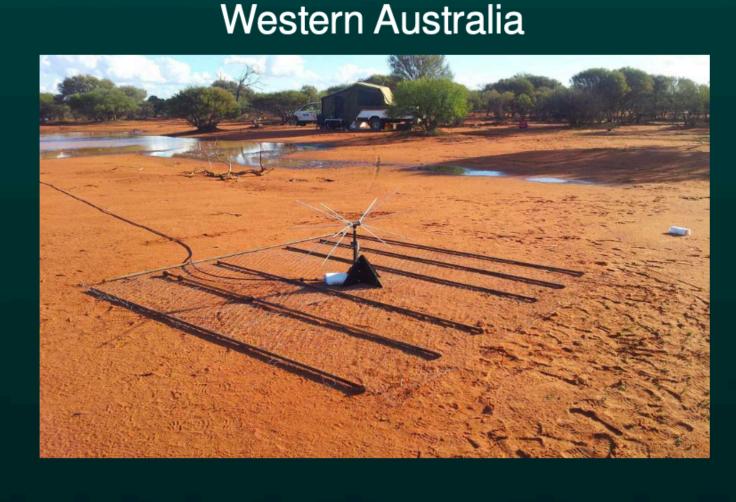
credit: Josh Dillon

Global 21cm experiments

EDGES

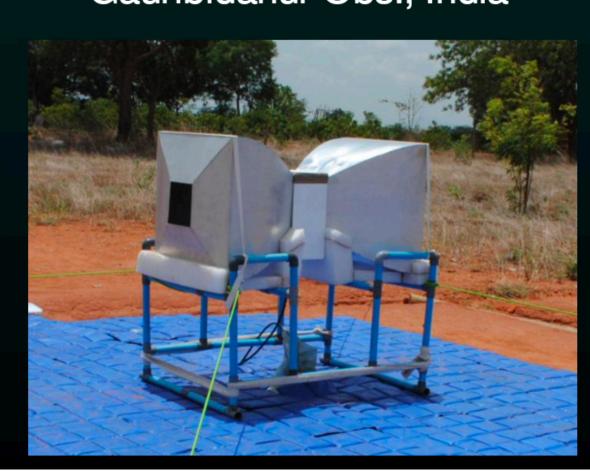
50 – 100, 100 – 200 MHz Murchison Radio Obs.

BIGHORNS 50 - 200 MHz



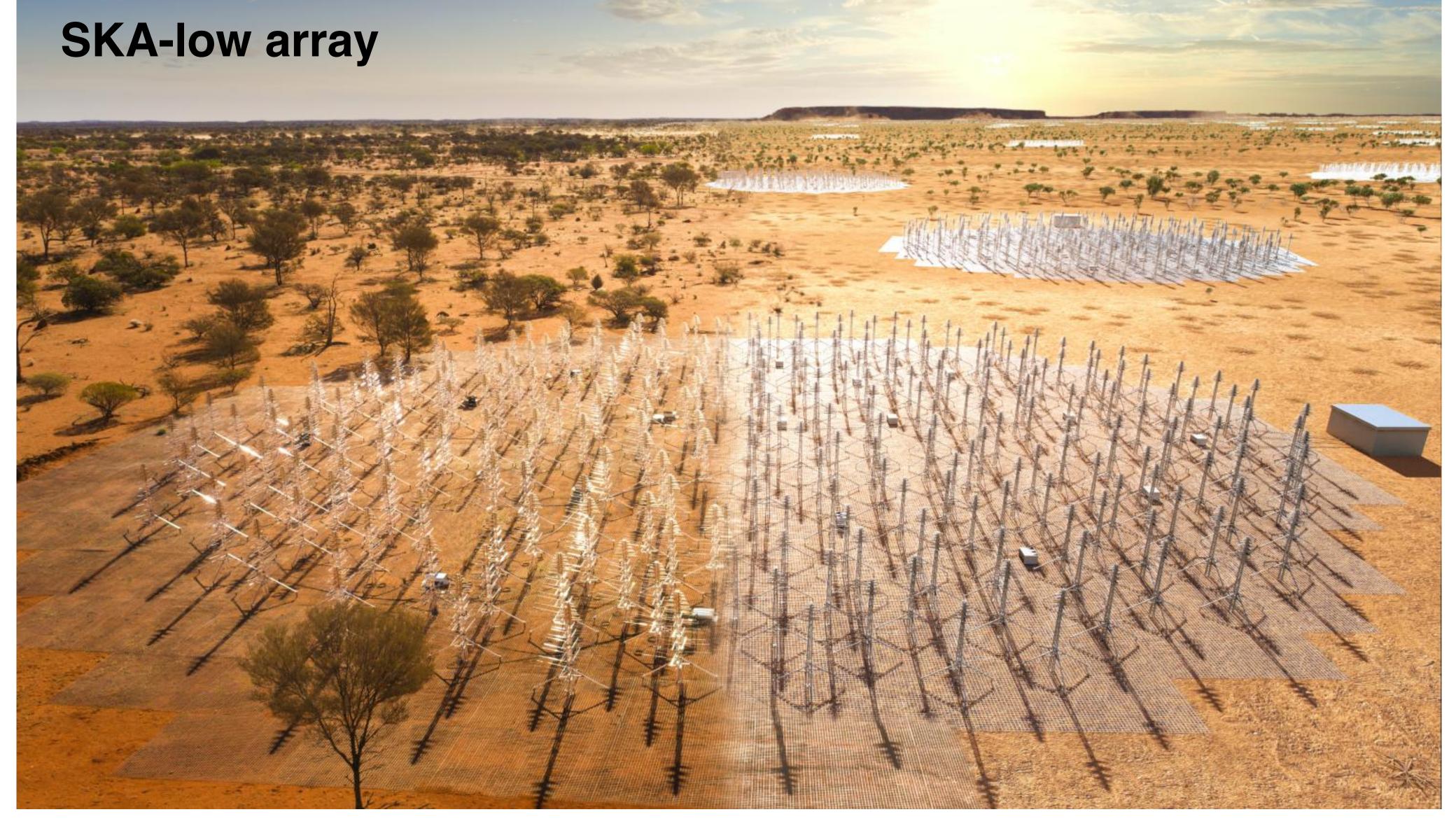
LEDA 30 - 88 MHz Owens Valley

SARAS2 87.5 – 175 MHz Gauribidanur Obs., India

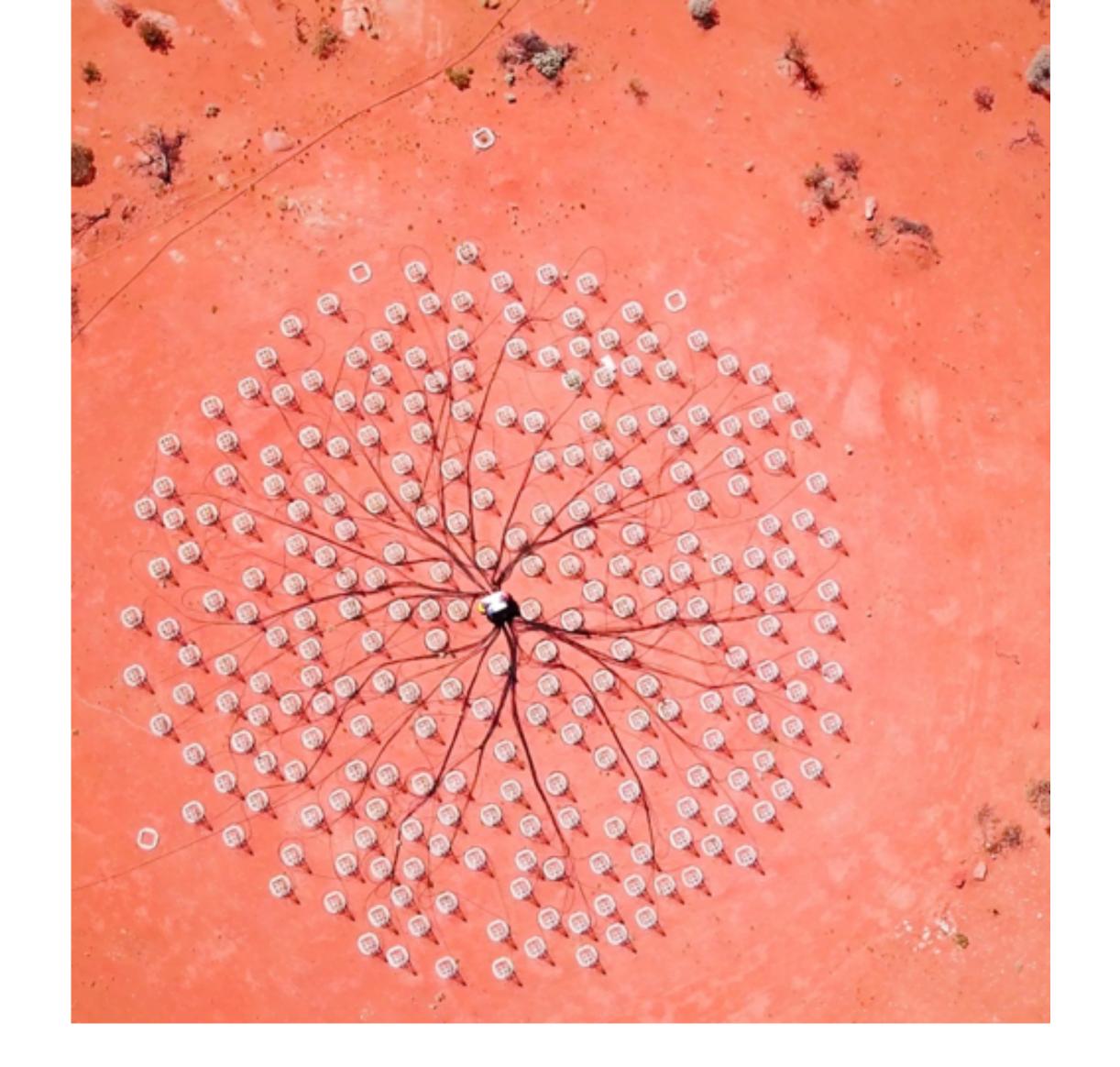


HYPERION 30 - 120 MHz Owens Valley

21cm Power spectrum measurements



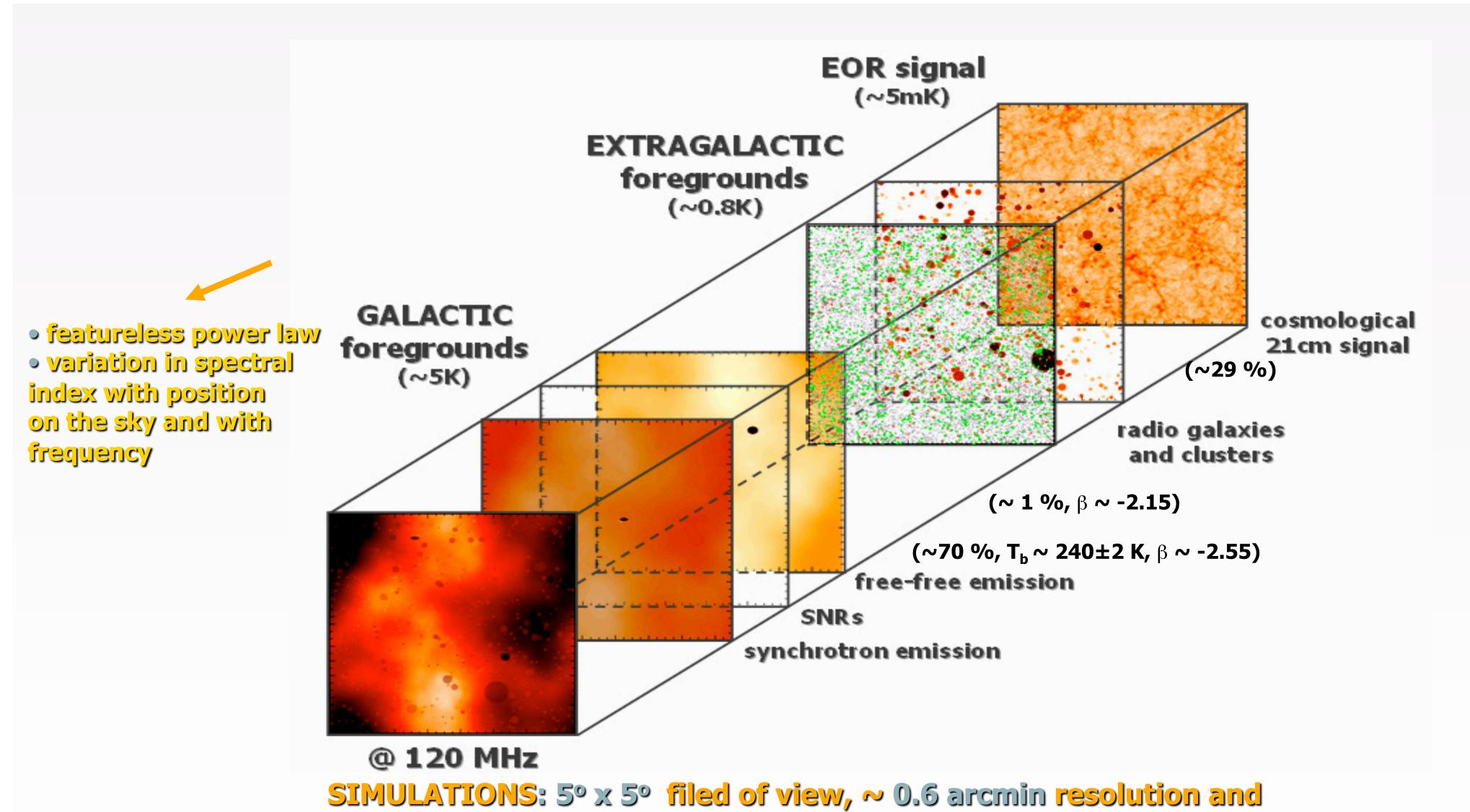
Compared to LOFAR: 25% better resolution, $8\times$ the sensitivity, $135\times$ faster



- 131,072 log-periodic antennas spread between 512 stations (~74km)
- Collecting area: 419,000 m²
- Frequency range: 50 MHz 350 MHz

Why is it so difficult to observe the 21 cm signal from the early universe?

Foreground Challenges



freq. range: 115-180 MHz LOFAR 50-370 SKA-low

Jelic et al., 2008, MNRAS

Letter Published: 01 March 2018

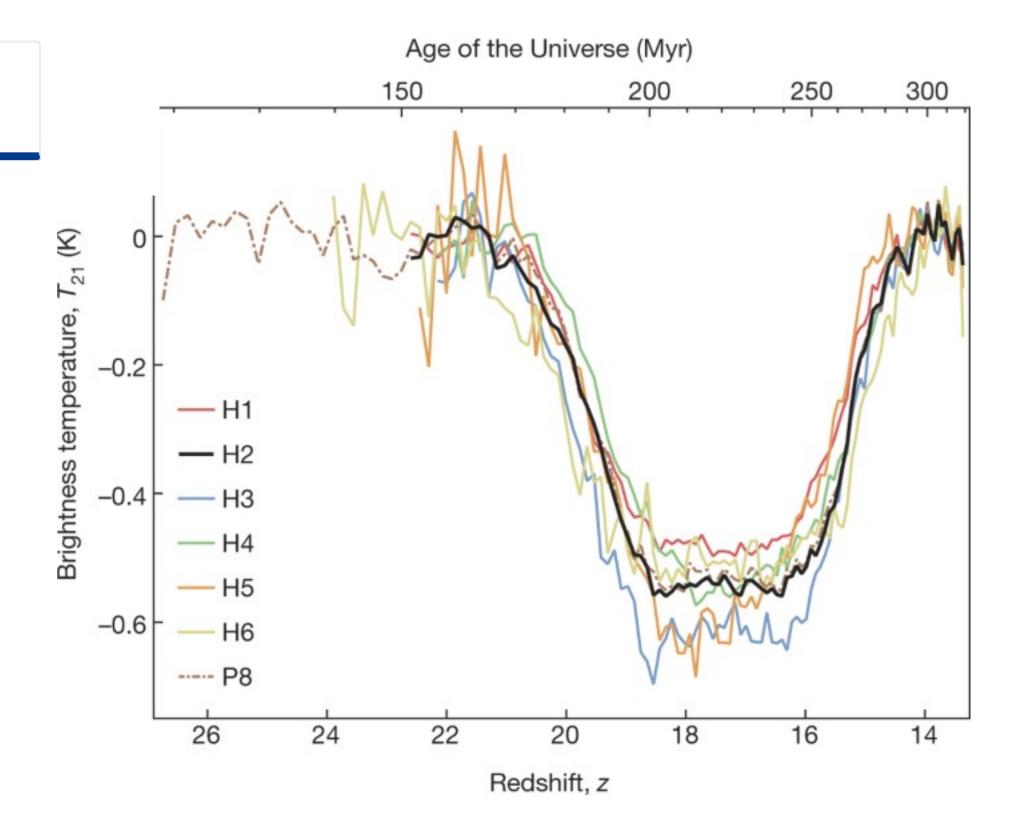
An absorption profile centred at 78 megahertz in the sky-averaged spectrum

Judd D. Bowman ☑, Alan E. E. Rogers, Raul A. Monsalve, Thomas J. Mozdzen & Nivedita Mahesh

Nature **555**, 67–70 (2018) Cite this article

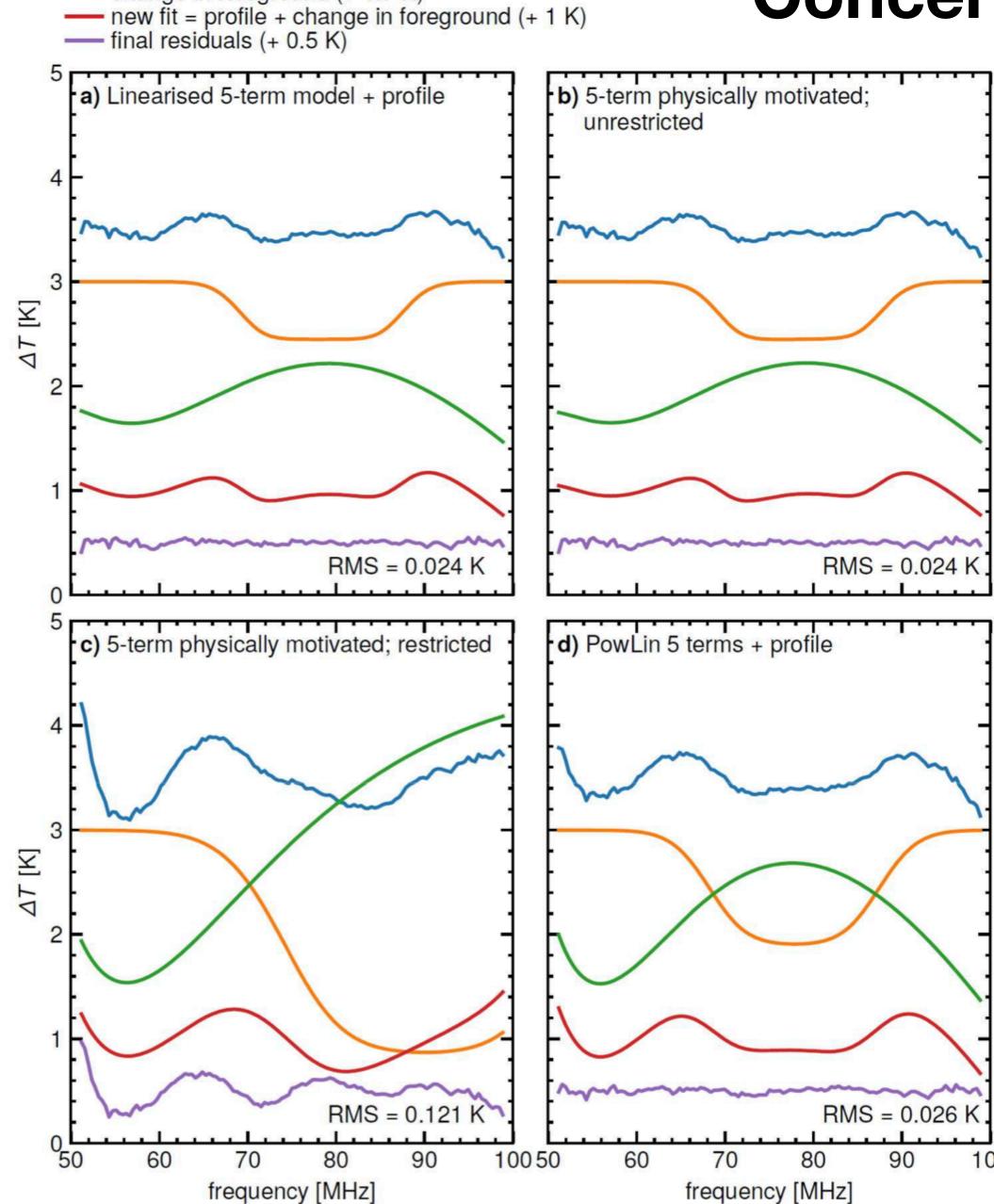
41k Accesses | 1005 Citations | 2104 Altmetric | Metrics

A Brief Communications Arising to this article was published on 19 December 2018



residuals from foreground-only fit (+ 3.5 K)
profile (+ 3 K)
change in foreground (+ 1.7 K)

Concerns about Modelling of the EDGES Data



 Fit foregrounds using low-order polynomials in log-log space

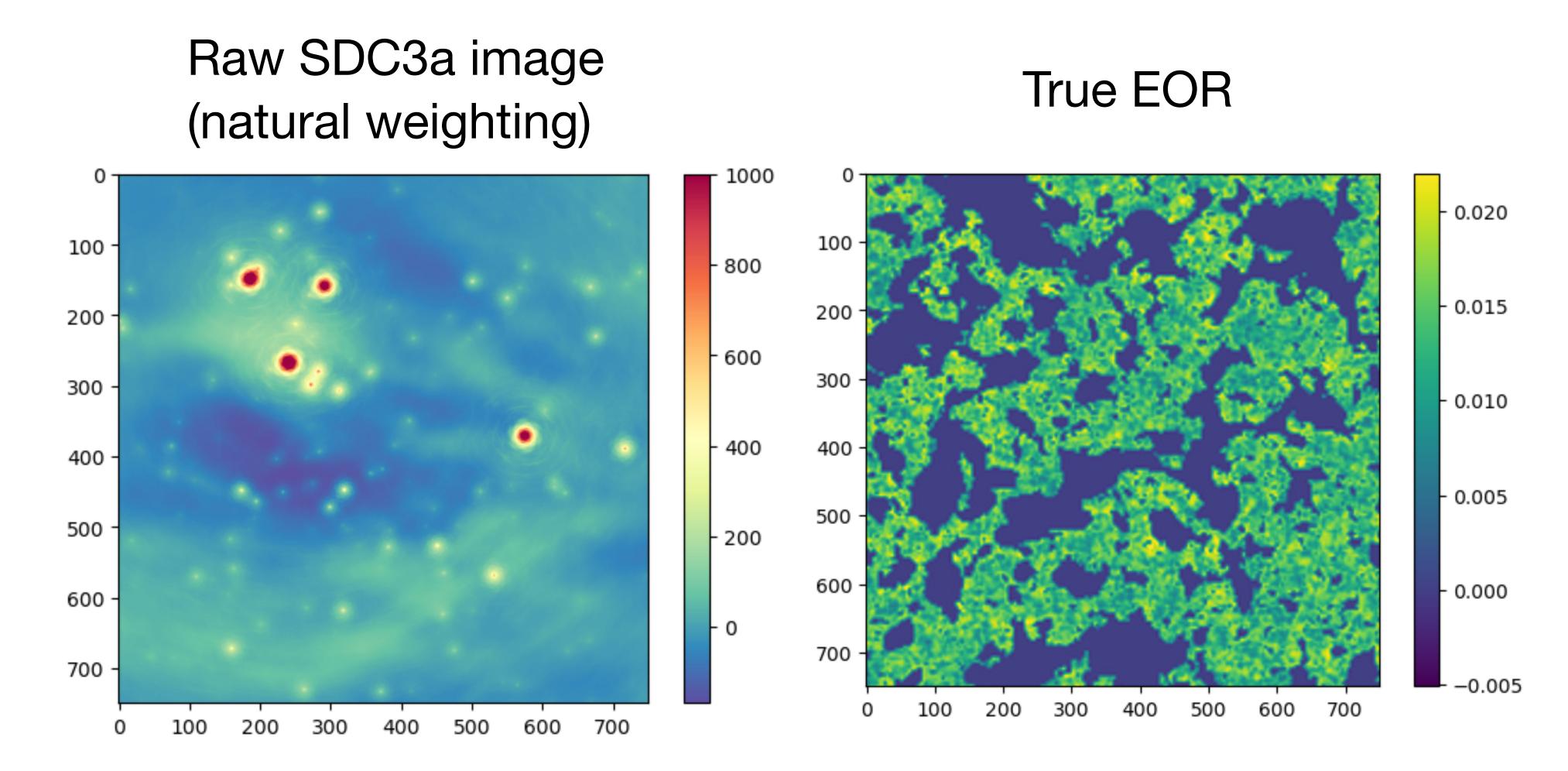
$$T_{\text{ant}} = T_{75} \left(\frac{v}{v_{75}}\right)^{\beta + \gamma \ln\left(\frac{v}{v_{75}}\right) + a_4 \left[\ln\left(\frac{v}{v_{75}}\right)\right]^2 + a_5 \left[\ln\left(\frac{v}{v_{75}}\right)\right]^3 + T_{\text{CMB}}$$

Four primary concerns:

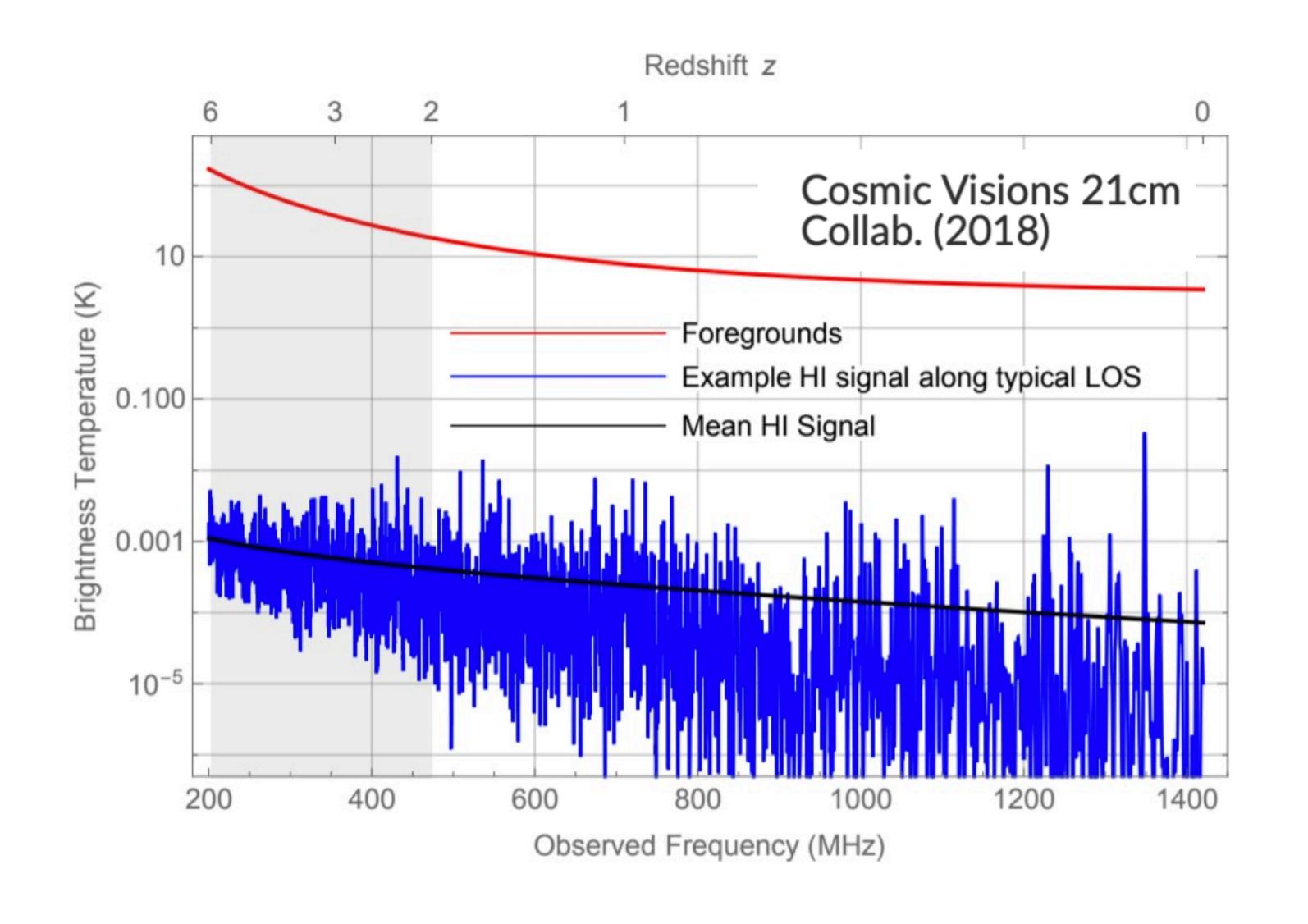
- Physical foreground interpretation (Hills et al. 2019)
- Alternative models and goodness of model fits (Hills et al. 2019)
- Ground plane resonances (Bradley et al. 2019)
- Chromatic beam effects

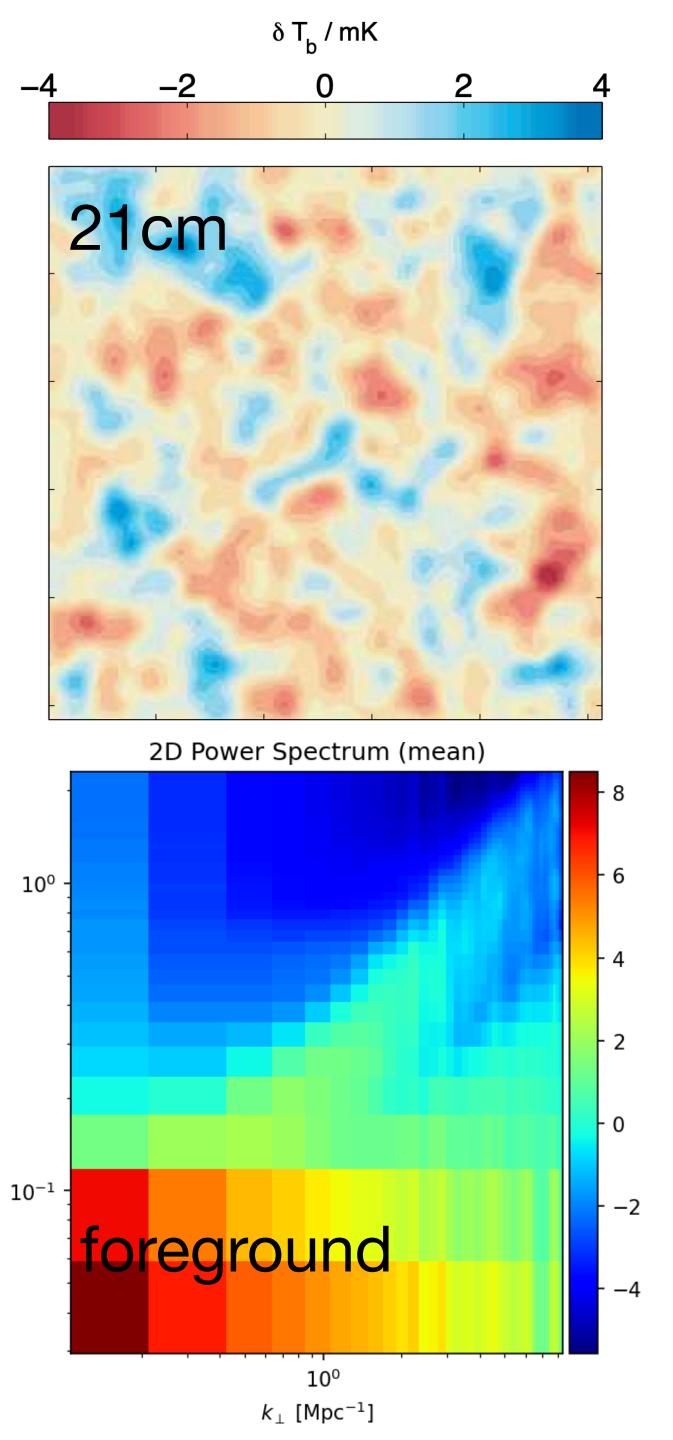
Challenge: FG contamination

- ·five orders of magnitude brighter
- •FG removal accuracy of at least 1 in 10,000 required !!!

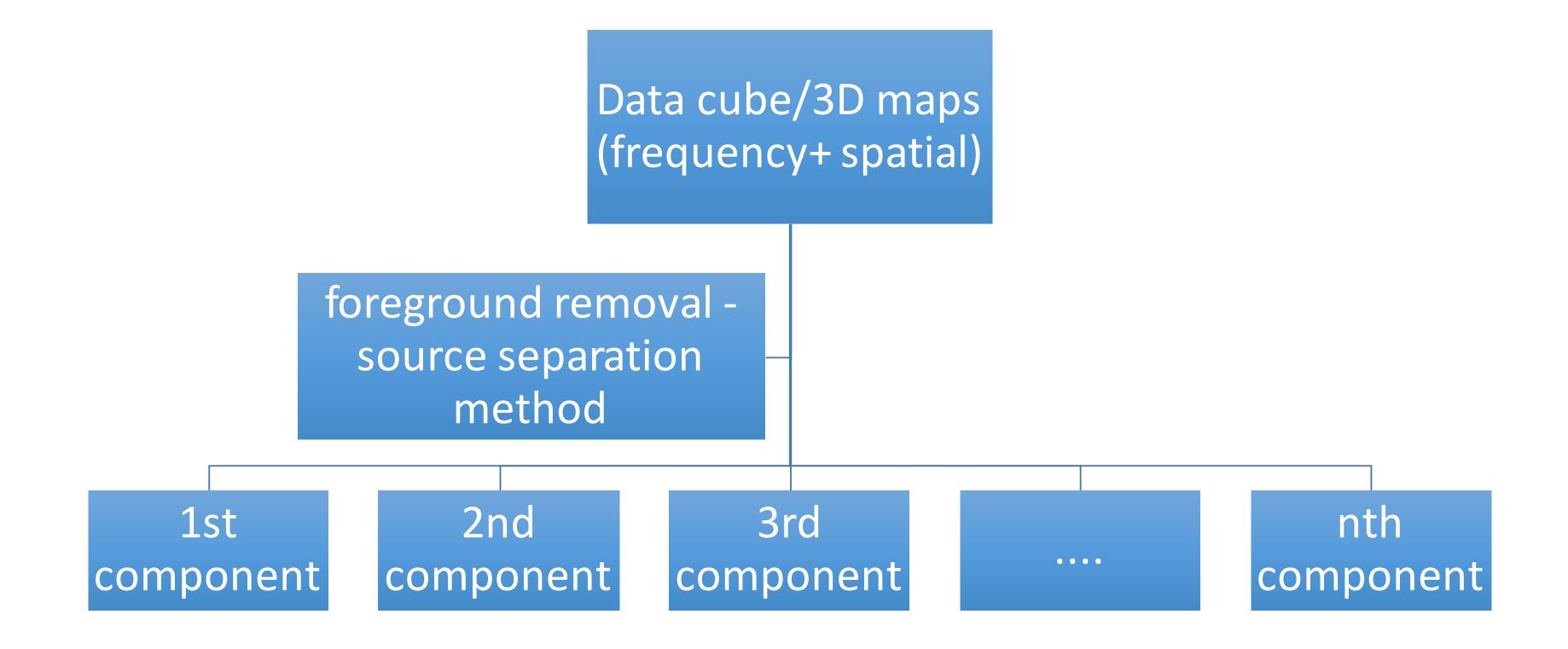


The key to separating out foregrounds: their spectral smoothness





Scientific goal



Cosmological 21 cm signal

From Physics to Smooth Foreground Model

- · Synchrotron radiation is emitted by relativistic electrons spiraling in magnetic fields.
- Brightness temperature approximately follows a power law in frequency: $T(\nu) \propto \nu^{-\alpha}$, where α is the spectral index related to the electron energy distribution.
- This power-law form arises because the electron energy spectrum is itself a power law: $N(E) \propto E^{-p}$

In practice, realistic spectra have small deviations. α varies slightly with frequency due to:

- Energy-dependent electron cooling,
- Superposition of multiple electron populations,
- Magnetic field variations,
- Propagation effects (e.g., absorption, scattering)

This means the spectrum is not exactly a power law, but rather a smoothly curved function of frequency

Mathematical modeling: frequency-dependent spectral index

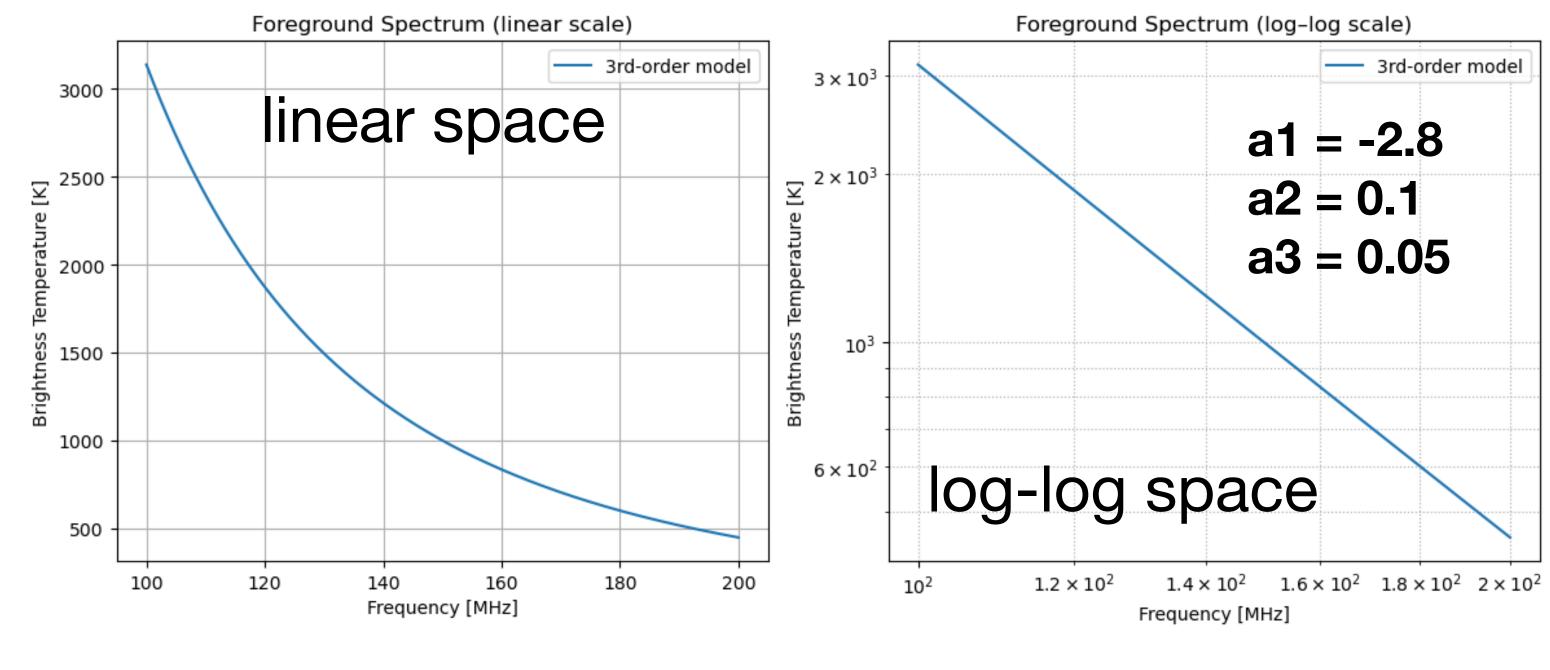
- . The brightness temperature is: $T(
 u,\hat{\mathbf{n}}) pprox T_*(\hat{\mathbf{n}}) \left(rac{
 u}{
 u_*}
 ight)^{lpha(\hat{\mathbf{n}},
 u)}$
- Real spectra deviate smoothly from pure power laws
- In reality, the spectral index α depends on frequency: $\alpha=\alpha(\nu,\hat{\mathbf{n}})$, with slow variation in ν
- Taylor (polynomial) expansion in log-frequency:

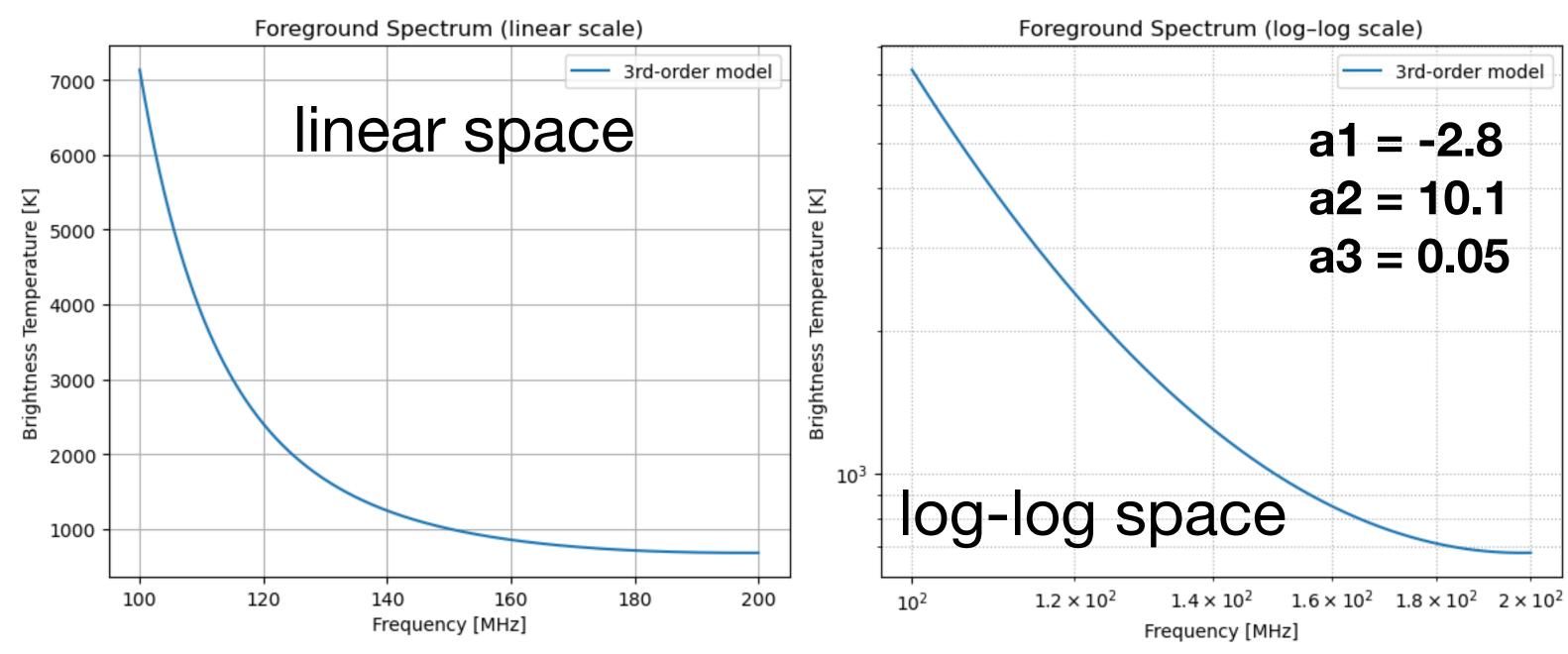
$$\ln T(\nu, \hat{\mathbf{n}}) = a_*(\hat{\mathbf{n}}) + a_1(\hat{\mathbf{n}}) \ln (\nu/\nu_*) + \frac{1}{2} a_2(\hat{\mathbf{n}}) \left[\ln (\nu/\nu_*) \right]^2 + \dots$$

• Return to linear (up to the 3rd order) scale:

$$T(\nu, \hat{\mathbf{n}}) = T_*(\hat{\mathbf{n}}) \left(\frac{\nu}{\nu_*}\right)^{a_1(\hat{\mathbf{n}})} \exp\left[\frac{1}{2}a_2(\hat{\mathbf{n}}) \left(\ln\frac{\nu}{\nu_*}\right)^2 + \frac{1}{6}a_3(\hat{\mathbf{n}}) \left(\ln\frac{\nu}{\nu_*}\right)^3\right]$$

some examples:





Frequency covariance:

$$T(\nu, \hat{\mathbf{n}}) = T_f(\hat{\mathbf{n}}) \left(\frac{\nu}{\nu_f}\right)^{-\alpha(\hat{\mathbf{n}})}$$

Then the covariance of temperature is related to:

$$\langle T(\nu)T(\nu')\rangle = \left\langle A^2 \left(\frac{\nu\nu'}{\nu_f^2}\right)^{-\alpha} \right\rangle = A^2 \left(\frac{\nu\nu'}{\nu_f^2}\right)^{-\bar{\alpha}} \left\langle \exp \left[-\delta\alpha \cdot \ln\left(\frac{\nu\nu'}{\nu_f^2}\right) \right] \right\rangle$$

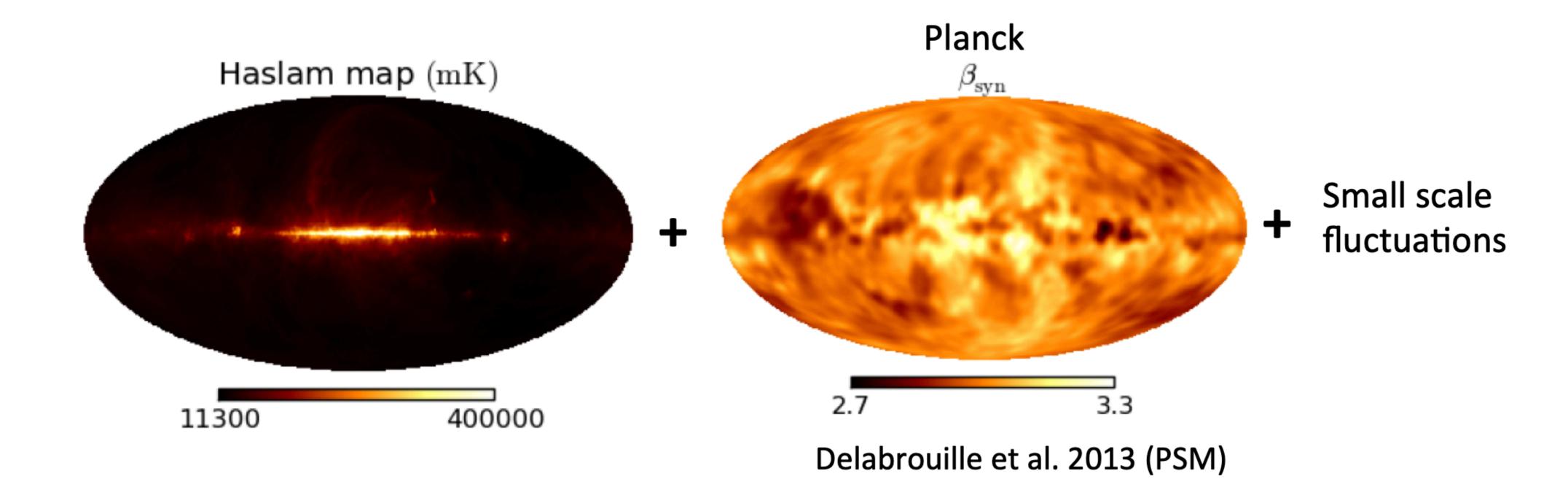
So the expectation becomes (for Gaussian pdf): $\left\langle e^{-\delta\alpha\cdot\ln\left(\nu\nu'/\nu_f^2\right)}\right\rangle = \exp\left[\frac{1}{2}\sigma_\alpha^2\left[\ln\left(\frac{\nu\nu'}{\nu_f^2}\right)\right]^2\right]$

with some approximations, one can find $\text{Cov}(\nu, \nu') \propto \exp\left(-\frac{\ln^2(\nu/\nu')}{2\xi^2}\right)$

21cm Foreground removal methods

Туре	Reference	Methods EOR Window, delay spectrum		
Foreground Avoidance	Datta et al . 2010 Trott et al. 2012 Morales et al. 2012 Parsons et al. 2013 Pober et al. 2013 Liu et al. 2014a,b			
Foreground suppression	Zaldarriaga et al 2004; McQuinn et al. (2006); Morales et al. 2006; Gleser et al. 2008; Jelic et al. 2008; Bowman et al. 2006; Liu et al. 2009; Datta et al. 2009; Petrovic & Oh (2011), Datta et al. 2010, Trott et al. 2012, Morales et al. 2012, Liu et al. 2008, Harker et al. 2008, 2018, Chapman et al. 2013, Chapman et al. 2012, 2016, Zhang 2015, Bonaldi & Brown 2015, Shaw 2015, Mertens 2018, Makinen 2021, Tauscher 2018, 2020, Rapetti 2020, Kennedy 2023,	learning, Gibbs sampling, Eigenanalysis,		

A Fast Simulation: Galactic synchrotron



408 MHz

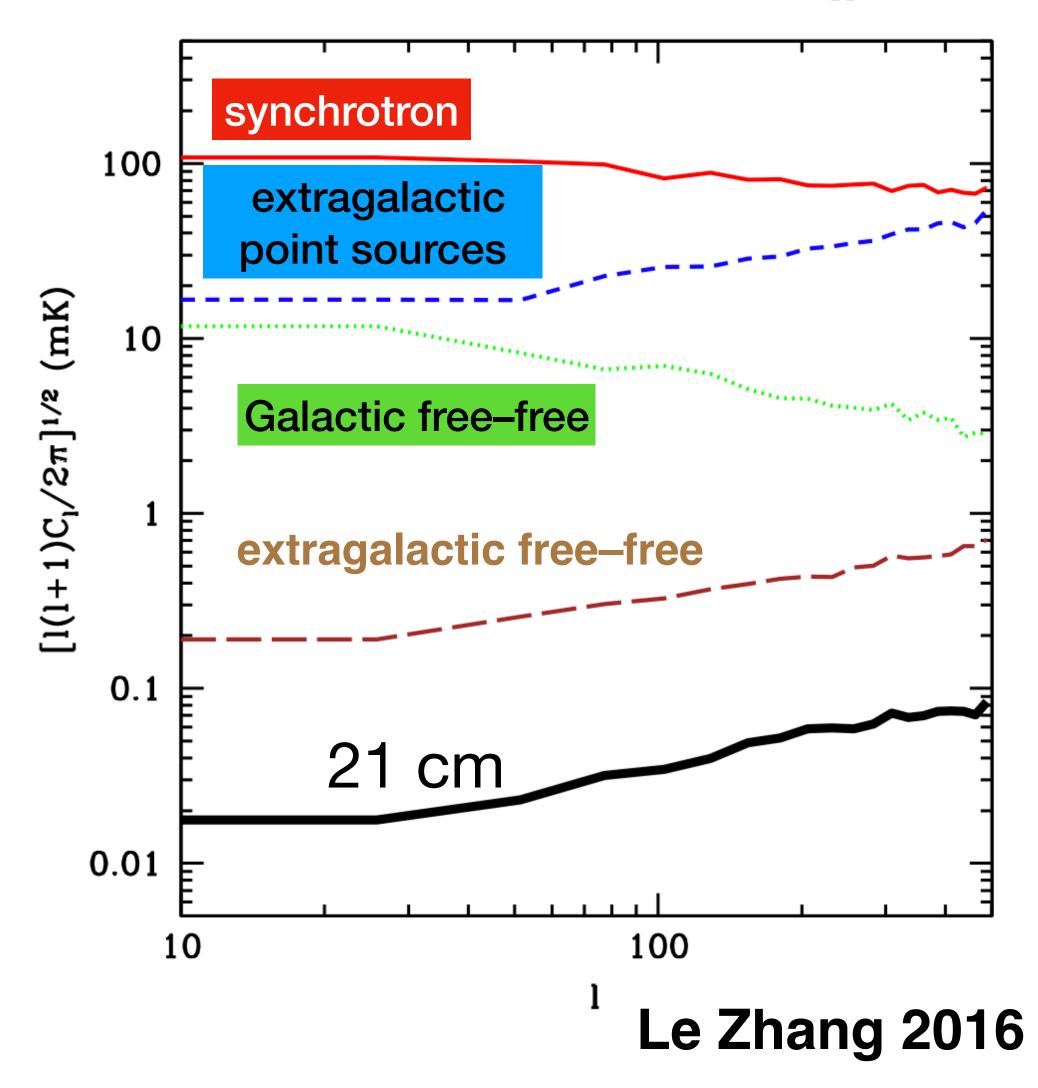
$$T_{\rm sync}(\nu,\hat{\mathbf{n}}) = T_{408}(\hat{\mathbf{n}}) \left(\frac{\nu_H}{\nu}\right)^{\alpha(\mathbf{n})} + \Delta T_{\rm Gaussian}(\nu,\hat{\mathbf{n}})$$
 Santos, Cooray, Knox 2003

let's simulate them step-by-step

Foreground simulations: isotropic components

$C_f(\ell, \nu, \nu') = A \left(\frac{1000}{\ell}\right)^{\beta} \left(\frac{\nu_f^2}{\nu \nu'}\right)^{2\alpha} \exp\left(-\frac{\ln^2(\nu/\nu')}{2\xi^2}\right)$

Santos et al. (2005)	$A (\mathrm{mK}^2)$	β	α	ξ	$\Delta \alpha$
Extragalactic point sources	57.0	1.1	2.07	1.0	0.2
Extragalactic free-free	0.014	1.0	2.10	35	0.03
Galactic synchrotron	700	2.4	2.80	4.0	0.15
Galactic free-free	0.088	3.0	2.15	35	0.03



Case I: a random fluctuations

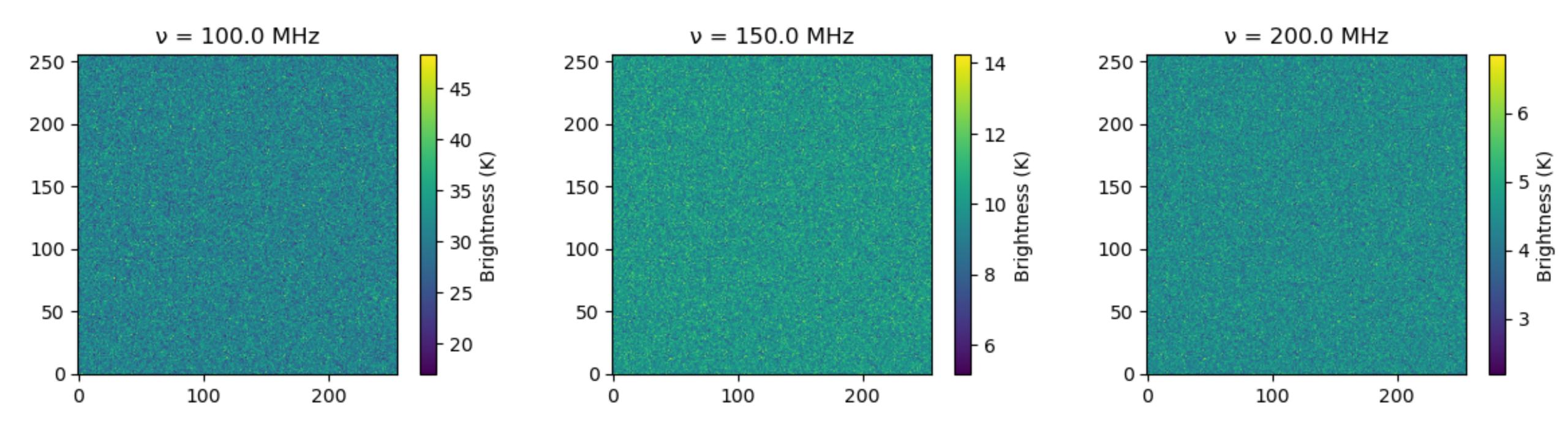
$$T_{\text{sync}}(\nu, \hat{\mathbf{n}}) = T_{408}(\hat{\mathbf{n}}) \left(\frac{\nu_H}{\nu}\right)^{\alpha(\hat{\mathbf{n}})} + T_{\text{Gaussian}}(\nu, \hat{\mathbf{n}})$$

- Frequency range: 100–200 MHz (relevant for Epoch of Reionization studies)
- · Brightness model: power-law dependence with spatially varying amplitude and spectral index
- Output: a data cube Tb (v,x,y) representing the brightness temperature in Kelvin

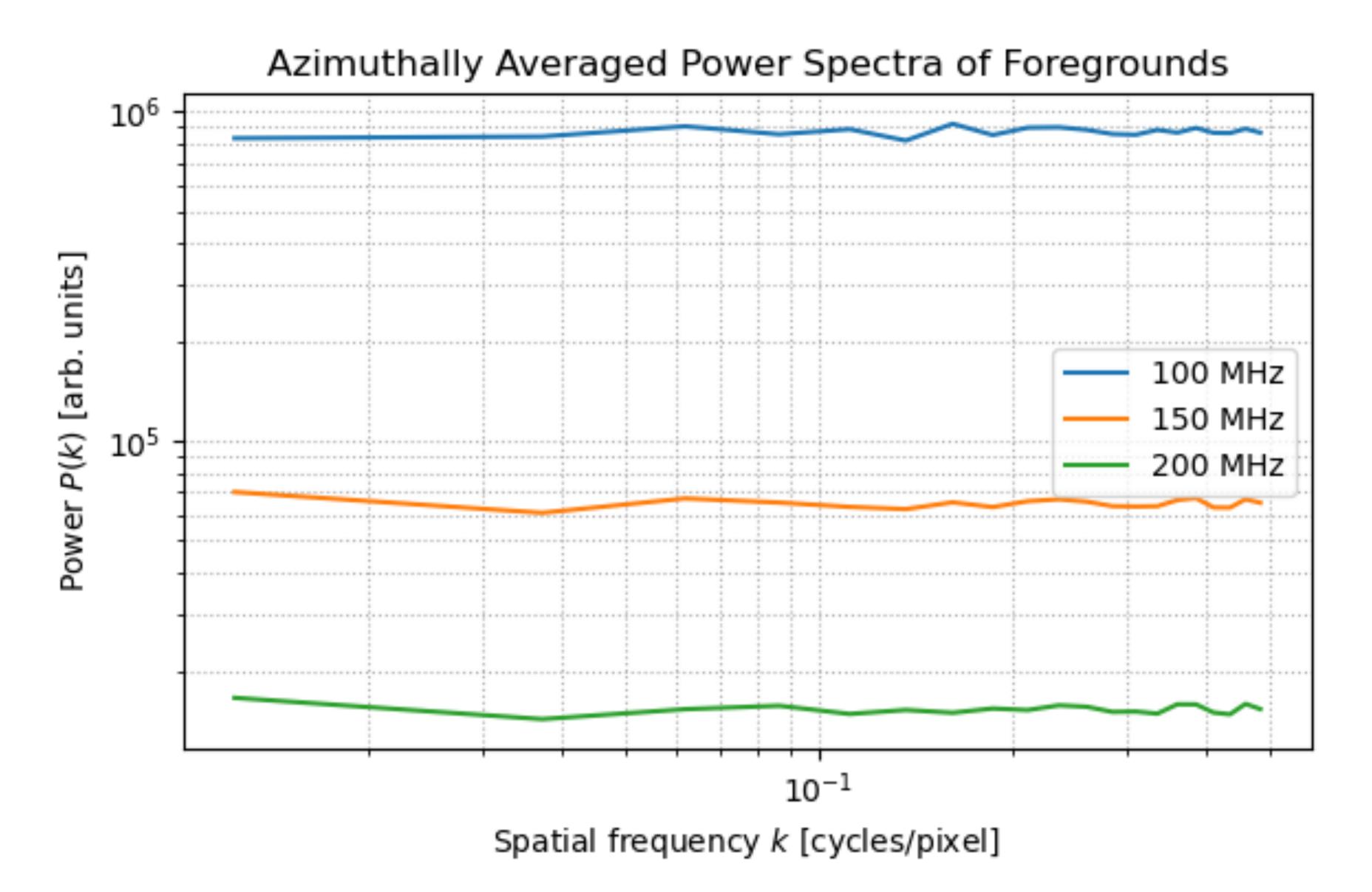
The emission spectrum follows a power law: $T_{\rm Gaussian}(\nu,x,y) = A(x,y) \left(\frac{\nu}{150 {\rm MHz}}\right)^{\alpha(x,y)}$

- The amplitude map A(x, y) follows a Gaussian distribution
- The spectral index $\alpha(x,y)$ varies spatially around a mean of -2.8 , as seen in real synchrotron dominated sky surveys

Temperature maps



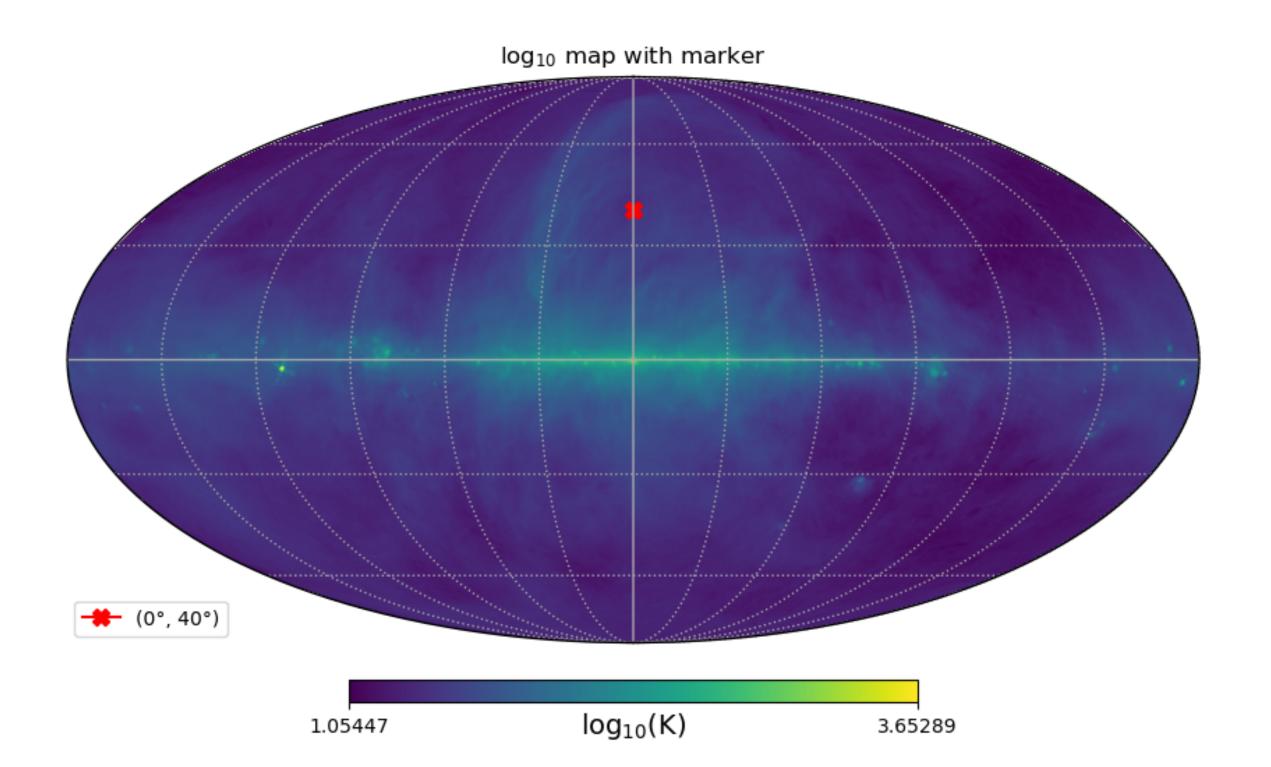
Flat angular power spectra (like shot noise)

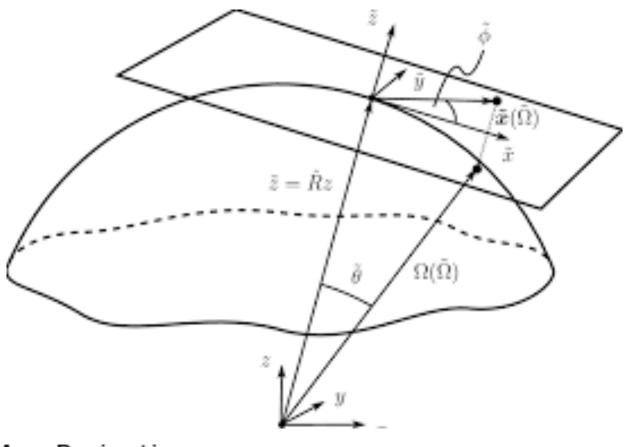


Extrapolate Haslam 408 MHz to ...

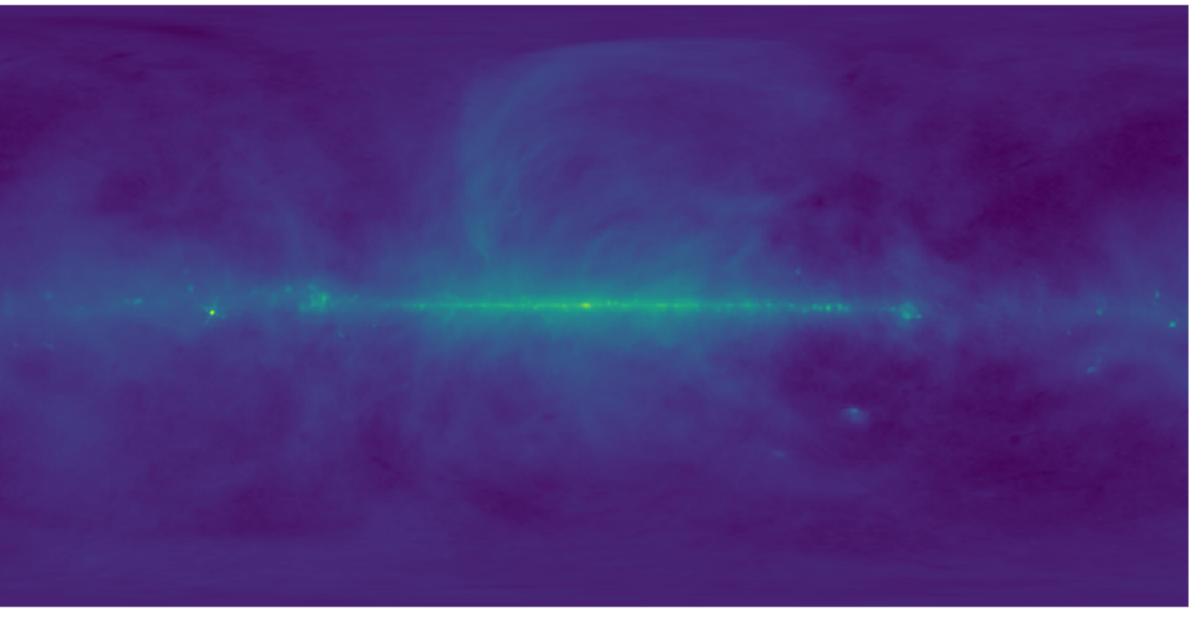
$$T_{\text{sync}}(\nu, \hat{\mathbf{n}}) = T_{408}(\hat{\mathbf{n}}) \left(\frac{\nu_H}{\nu}\right)^{\alpha(\hat{\mathbf{n}})} + T_{\text{Gaussian}}(\nu, \hat{\mathbf{n}})$$

project Haslam map to a flat sky





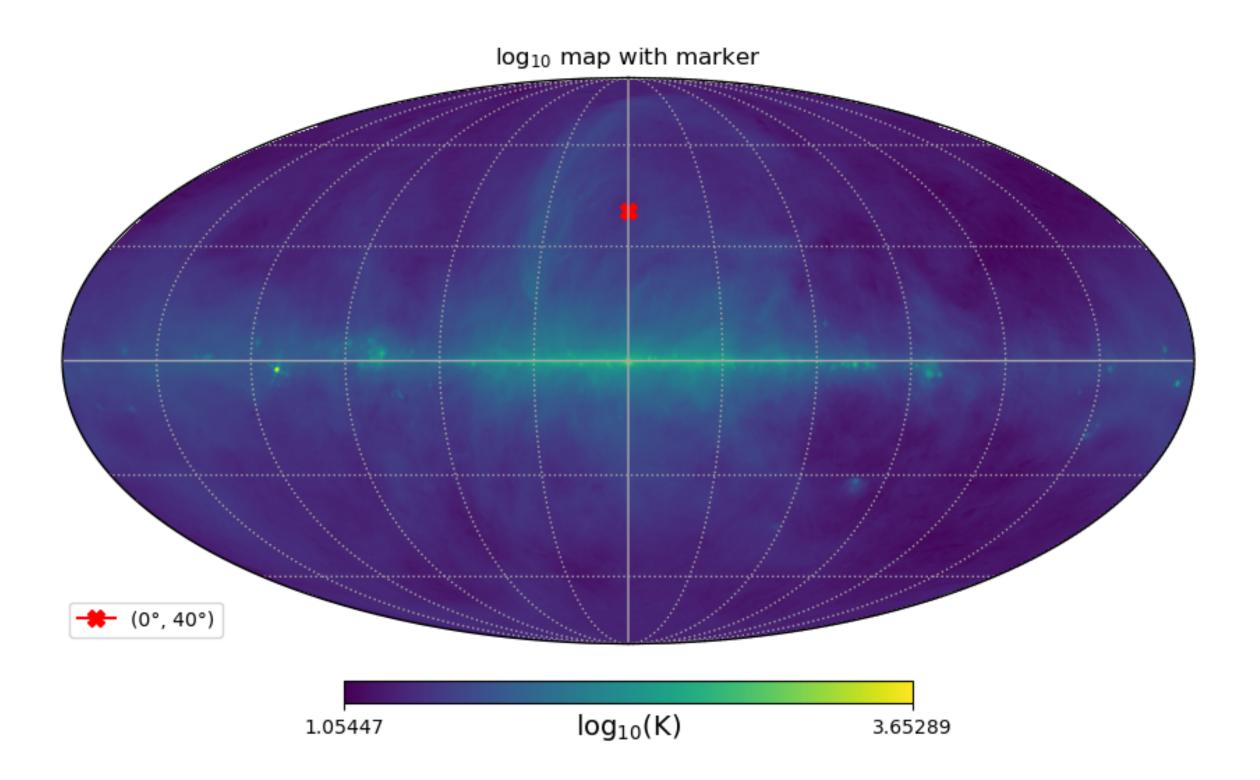
Map Projection

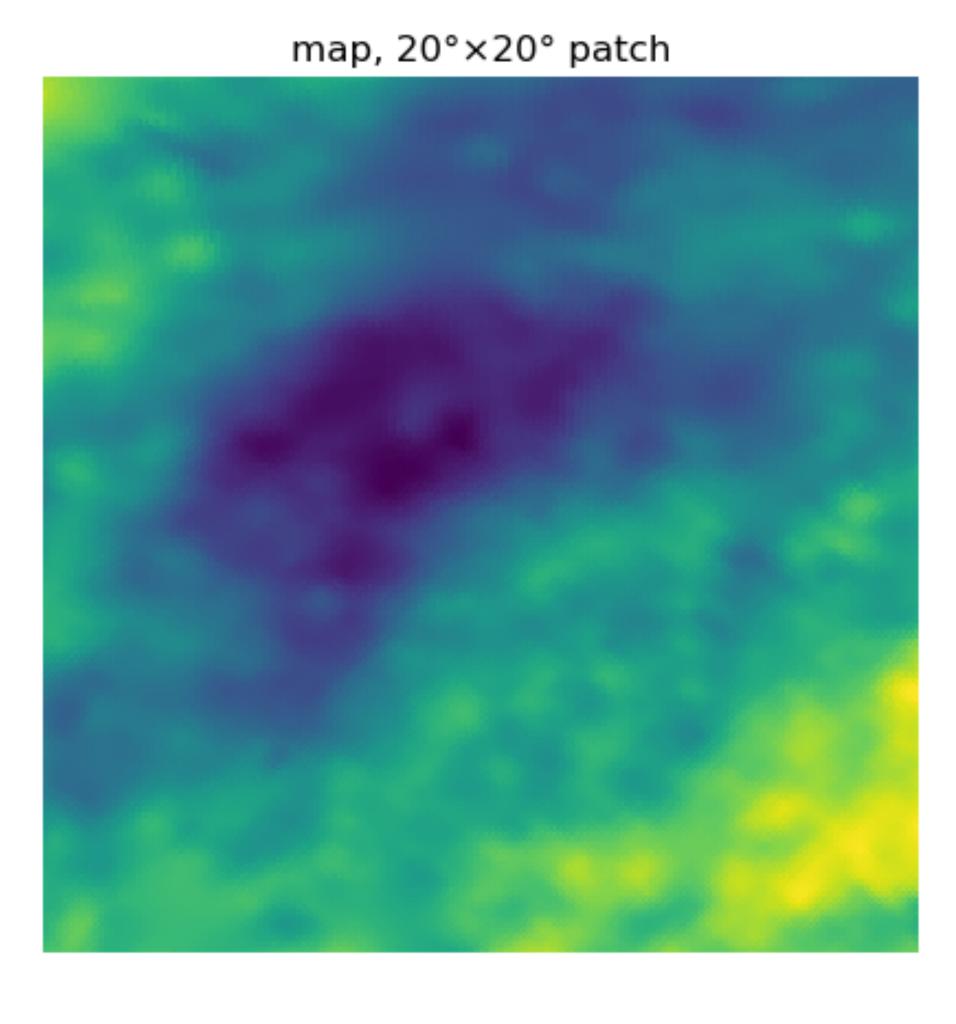


Extrapolate Haslam 408 to ...

$$T_{\text{sync}}(\nu, \hat{\mathbf{n}}) = T_{408}(\hat{\mathbf{n}}) \left(\frac{\nu_H}{\nu}\right)^{\alpha(\hat{\mathbf{n}})} + T_{\text{Gaussian}}(\nu, \hat{\mathbf{n}})$$

•project a small region to a flat patch (e.g., 20° × 20°)



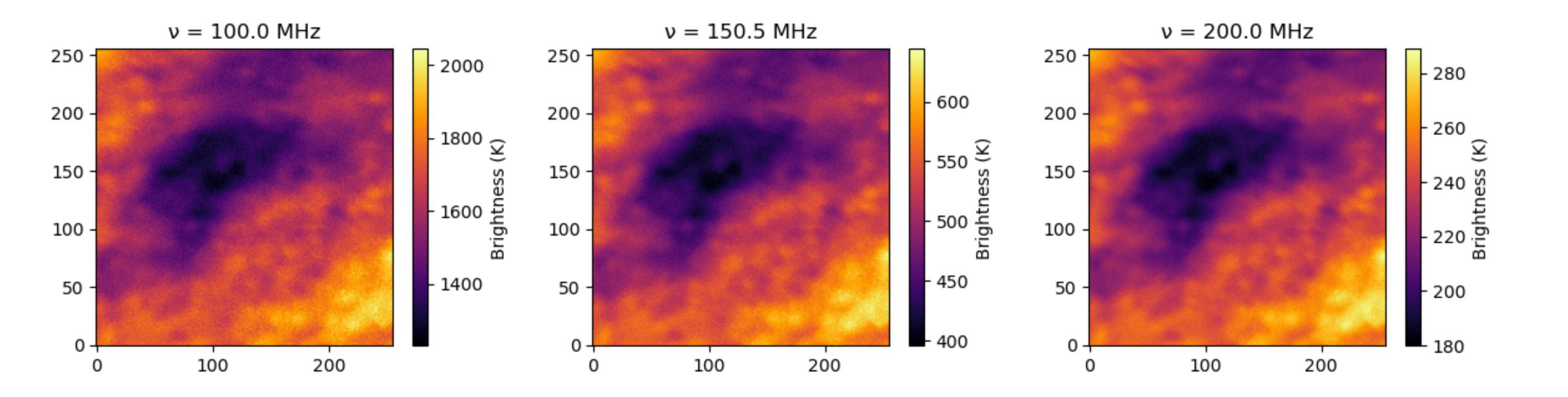


24.8 (K)

$$T_{\text{sync}}(\nu, \hat{\mathbf{n}}) = T_{408}(\hat{\mathbf{n}}) \left(\frac{\nu_H}{\nu}\right)^{\alpha(\hat{\mathbf{n}})}$$

$$\alpha = -2.8 + G(0, \sigma_{\alpha})$$
 we assume $\sigma_{\alpha} = 0.01$

Alternatively, using a "spatially-varying" α -map (e.g. from Planck or simulations)



Blind foreground subtraction

- LOS fitting: choose ad-hoc smooth functions. Usually polynomial fitting in log-log space.
- PCA: uncorrelated sources maximizing the variance. Diagonalize $\nu \nu'$ covariance and subtract principal eigenvectors.
- ICA: independent sources maximizing the variance. Find independent sources by maximizing non-Gaussianity.
- GPR: Bayesian regression with smoothness priors; Learn smooth foreground functions per line-of-sight via a kernel

(See also: Gleser et al. 2008, Liu et al. 2009, Ricciardi et al., 2010, Harker et al. 2009, Hyvärinen et al. 1999, Chapman et al. 2012, Wolz et al. 2013, Chapman et al. 2013)

·Issues:

- Mode mixing of angular and frequency fluctuations by frequency-dependent baselines (esp. interferometers); gain fluctuations...
- Robustness biasing introduced if foreground model poorly understood (esp. non-Gaussianities) although excellent results.
- Statistical optimality need to keep track of transformations on statistics, for optimal estimation

Polynomial Fitting in Log-Log Space

Fit and subtract smooth astrophysical foregrounds from frequency spectra using a polynomial model in log-log space, taking advantage of the fact that:

$$\ln T(\nu, \hat{\mathbf{n}}) = a_*(\hat{\mathbf{n}}) + a_1(\hat{\mathbf{n}}) \ln (\nu/\nu_*) + \frac{1}{2} a_2(\hat{\mathbf{n}}) \left[\ln (\nu/\nu_*) \right]^2 + \dots$$

Given data:

Brightness temperature: $T(\nu)$ in Kelvin

Frequencies: $\nu_i \in \left[\nu_{\min}$, $\nu_{\max}\right]$ - Choose a reference frequency ν_0

Define: $x_i = \ln(\nu_i/\nu_0)$, $y_i = \ln T(\nu_i)$

a power law (up to the 1st order): $T(\nu)=T_0\left(\nu/\nu_0\right)^\alpha\Rightarrow y_i=\ln T_0+\alpha\cdot x_i$; a straight line in log-log space

Generalize to a Polynomial

To model spectral curvature, generalize the model to a polynomial:

$$y_i = \ln T(\nu_i) \approx \sum_{k=0}^n c_k \cdot x_i^k$$

This models:

- Smooth foregrounds
- Pixel-by-pixel spectral index variations
- Higher-order spectral curvature

Least-Squares Fit Using Vandermonde Matrix

 $x_i = \ln(\nu_i/\nu_0)$ n for the n-th coefficient

$$\mathbf{V} = \begin{bmatrix} x_1^{n-1} & x_1^{n-2} & \cdots & x_1^1 & 1 \\ x_2^{n-1} & x_2^{n-2} & \cdots & x_2^1 & 1 \\ \vdots & \vdots & & \vdots & \vdots \\ x_{N_{\nu}}^{n-1} & x_{N_{\nu}}^{n-2} & \cdots & x_{N_{\nu}}^1 & 1 \end{bmatrix} \quad \mathbf{C} = \begin{bmatrix} c_{n-1,1} & c_{n-1,2} & \cdots & c_{n-1,N} \\ c_{n-2,1} & c_{n-2,2} & \cdots & c_{n-2,N} \\ \vdots & \vdots & & \vdots \\ c_{1,1} & c_{1,2} & \cdots & c_{1,N} \\ c_{0,1} & c_{0,2} & \cdots & c_{0,N} \end{bmatrix} \quad \mathbf{Y} = \begin{bmatrix} y_{1,1} & y_{1,2} & \cdots & y_{1,N} \\ y_{2,1} & y_{2,2} & \cdots & y_{2,N} \\ \vdots & \vdots & & \vdots \\ y_{N_{\nu},1} & y_{N_{\nu},2} & \cdots & y_{N_{\nu},N} \end{bmatrix}$$

$$C = \begin{bmatrix} c_{n-1,1} & c_{n-1,2} & \cdots & c_{n-1,N} \\ c_{n-2,1} & c_{n-2,2} & \cdots & c_{n-2,N} \\ \vdots & \vdots & & \vdots \\ c_{1,1} & c_{1,2} & \cdots & c_{1,N} \\ c_{0,1} & c_{0,2} & \cdots & c_{0,N} \end{bmatrix}$$

$$\mathbf{Y} = \begin{bmatrix} y_{1,1} & y_{1,2} & \cdots & y_{1,N} \\ y_{2,1} & y_{2,2} & \cdots & y_{2,N} \\ \vdots & \vdots & & \vdots \\ y_{N_{\nu},1} & y_{N_{\nu},2} & \cdots & y_{N_{\nu},N} \end{bmatrix}$$

- •Solve for the linear equation $\mathbf{V}^{N_{\nu}\times n}\mathbf{C}^{n\times N}=\mathbf{Y}^{n_{\nu}\times N}$
- best-fit coefficients (solve for the the linear system):

$$\mathbf{C} = (V^{\mathsf{T}}V)^{-1}V^{\mathsf{T}} \cdot \mathbf{Y} = V^{\dagger}\mathbf{Y}$$

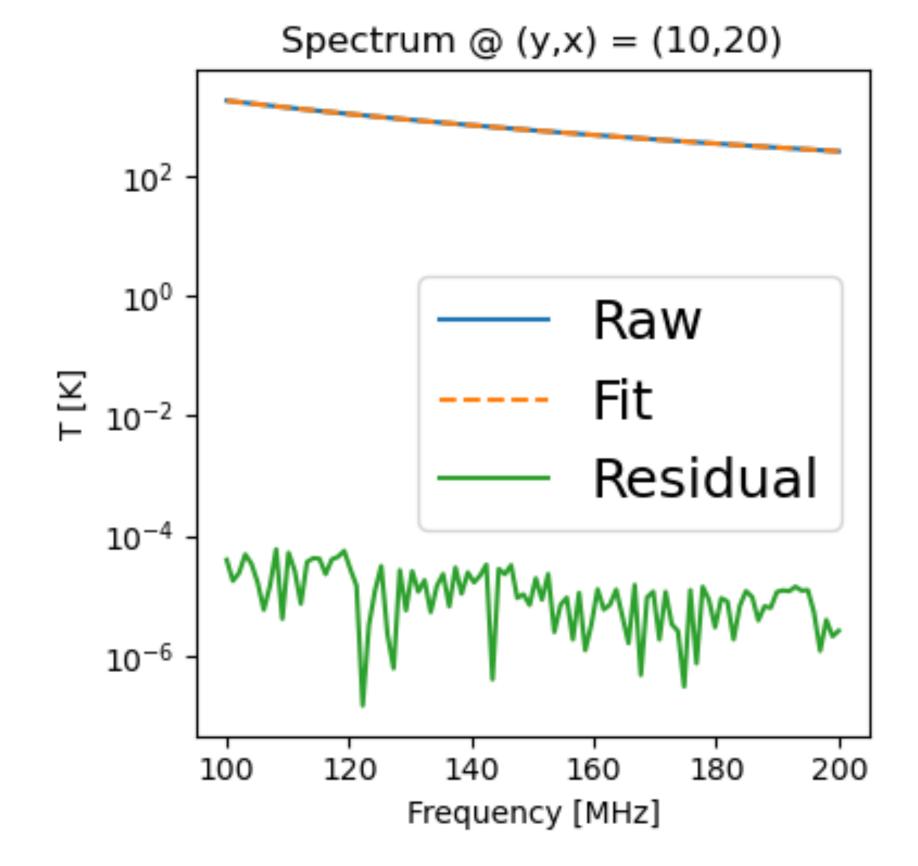
Reconstruct and Subtract

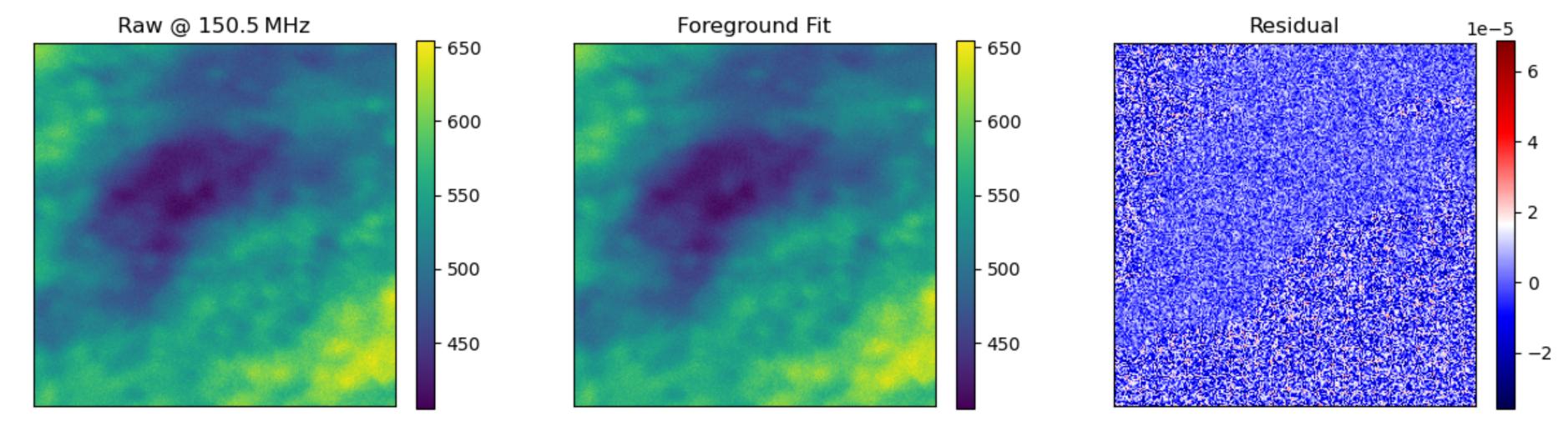
1. Evaluate the fitted model:

$$\widehat{\mathbf{Y}} = \mathbf{V} \cdot \mathbf{C} \Rightarrow \widehat{T}(\nu) = \exp(\widehat{y})$$

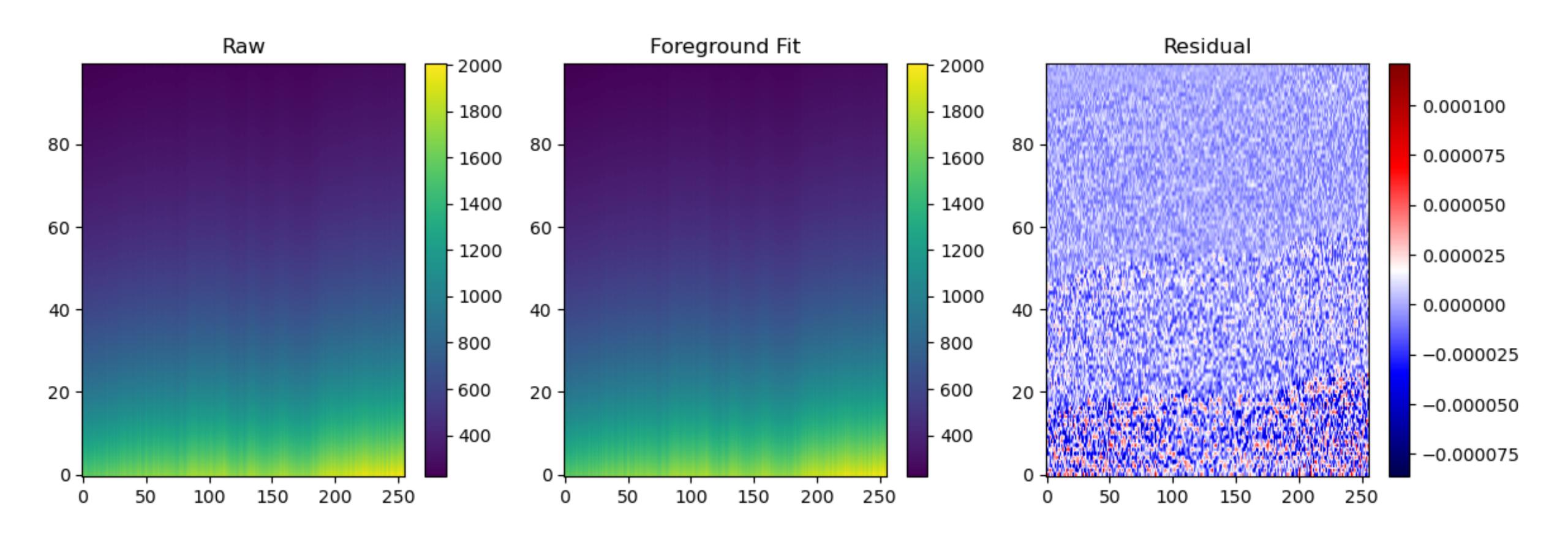
2. Subtract to get residuals (see residuals amplitude):

$$T_{\text{resid}}(\nu) = T_{\text{obs}}(\nu) - \widehat{T}(\nu)$$



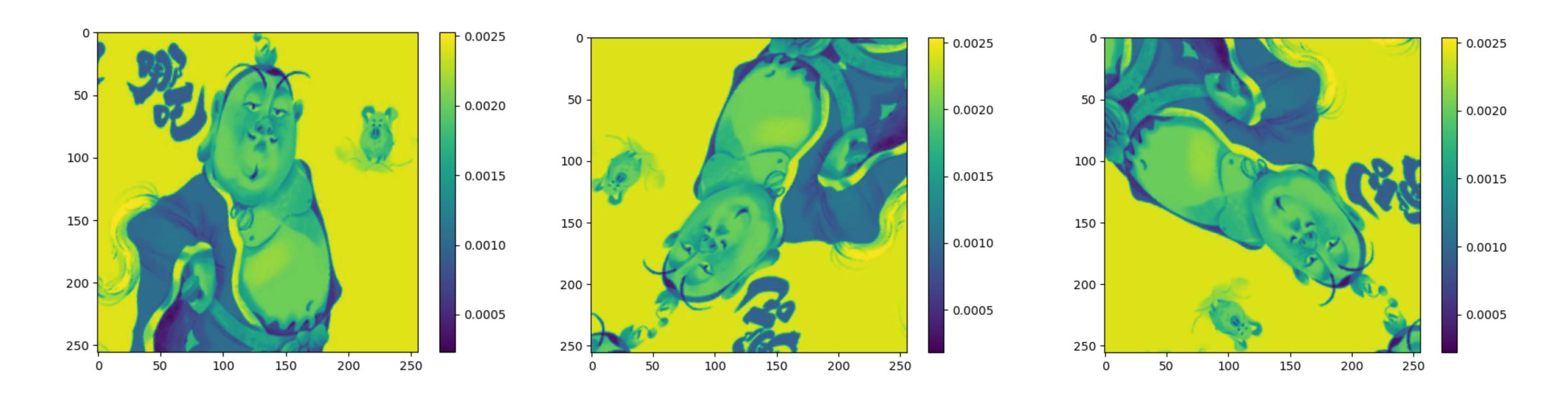


Residuals along LOS



Simulating a Toy 21cm Data Cube with Random Image Rotations

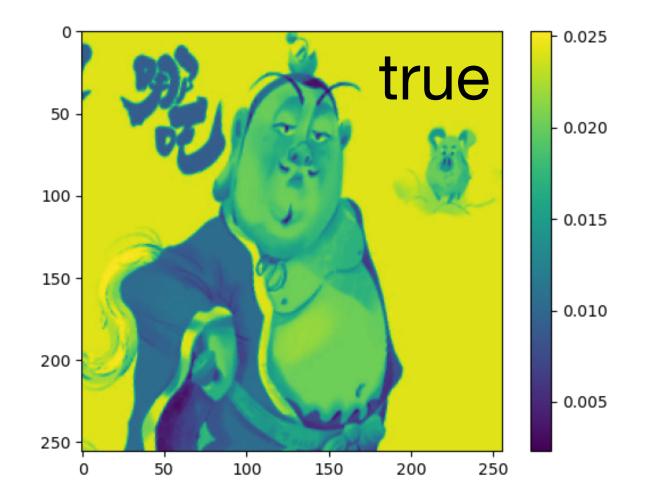
•Generate a mock 3D 21cm data cube by treating a 2D image as a spatial slice and simulating redshift evolution via random rotations along the frequency axis

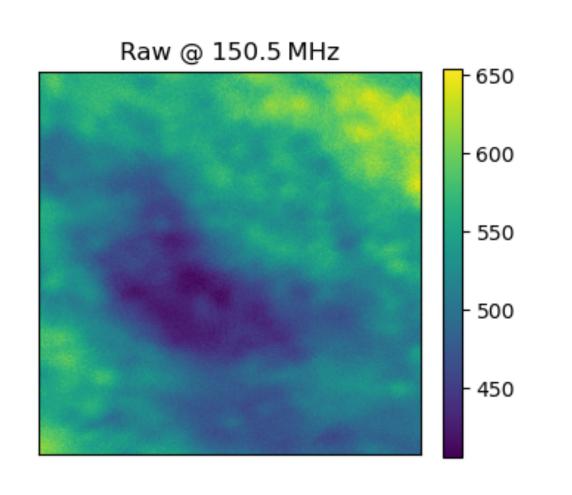


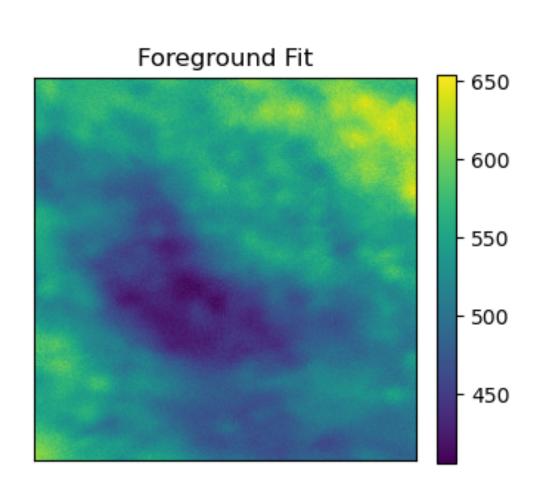
More realistic case: run 21cmFAST (https://21cmfast.readthedocs.io)

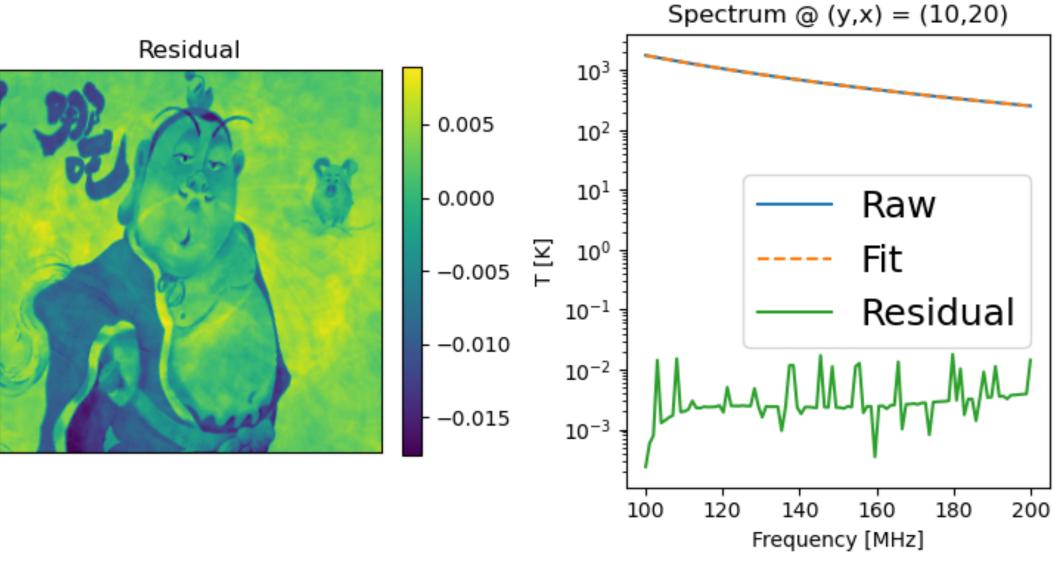
Adding EoR to data cube...

Pearson correlation coefficient r=0.95









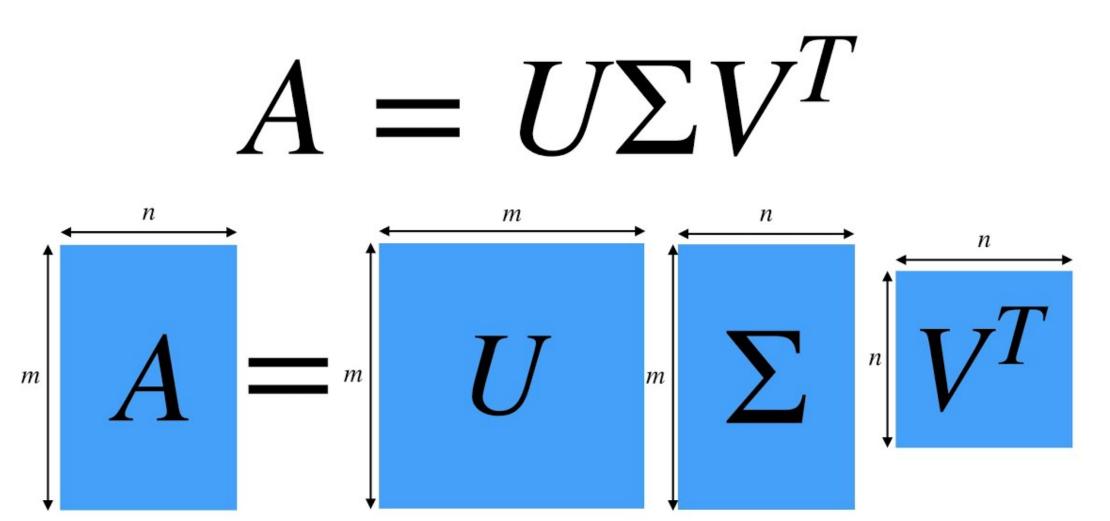
Foreground Removal via Singular Value Decomposition (SVD)

Why Use SVD for Foreground Removal?

- Foregrounds are spectrally smooth, but not strictly power-law
- Polynomial fits require a predefined functional form
- This smoothness means foreground spectra occupy a low-dimensional subspace in frequency space
- Foregrounds dominate the largest coherent structures in the data matrix
- SVD makes no assumptions on the functional basis
- → Let the data define its own foreground basis!

What's Singular Value Decomposition

SVD is a fundamental matrix factorization technique that expresses any real matrix ${\bf A}$ as a product of three matrices:



- $-\mathbf{A} \in \mathbb{R}^{m \times n}$ general matrix
- $-\mathbf{U} \in \mathbb{R}^{m \times m}$ orthonormal columns ("left singular vectors")
- $\Sigma \in \mathbb{R}^{m imes n}$ diagonal matrix with non-negative singular values in descending order
- $\mathbf{V} \in \mathbb{R}^{n \times n}$ orthonormal columns ("right singular vectors")

- ·SVD decomposes data into orthogonal modes ranked by importance
- ullet The singular values in $oldsymbol{\Sigma}$ tell us how much variance each mode explains

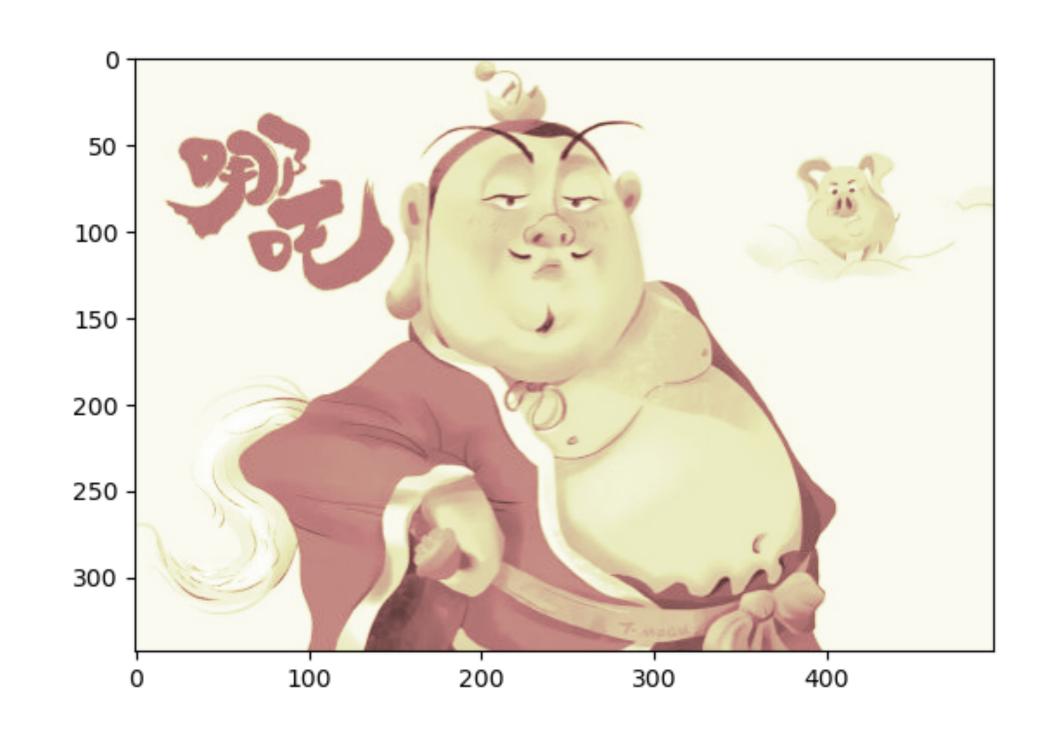
SVD for Beginners – Decomposing a 2D Map

Let's say we have a 2D data map: $\mathbf{A} \in \mathbb{R}^{N_y \times N_x}$

We can apply SVD:

$$\mathbf{A} = \mathbf{U}\mathbf{\Sigma}\mathbf{V}^{\mathsf{T}} = \sum_{k=1}^{} \sigma_k \cdot \mathbf{u}_k \mathbf{v}_k^{\mathsf{T}}$$

- U contains vertical patterns (left singular vectors)
- \mathbf{V}^T contains horizontal patterns (right singular vectors)
- Σ contains strengths (singular values) of each mode

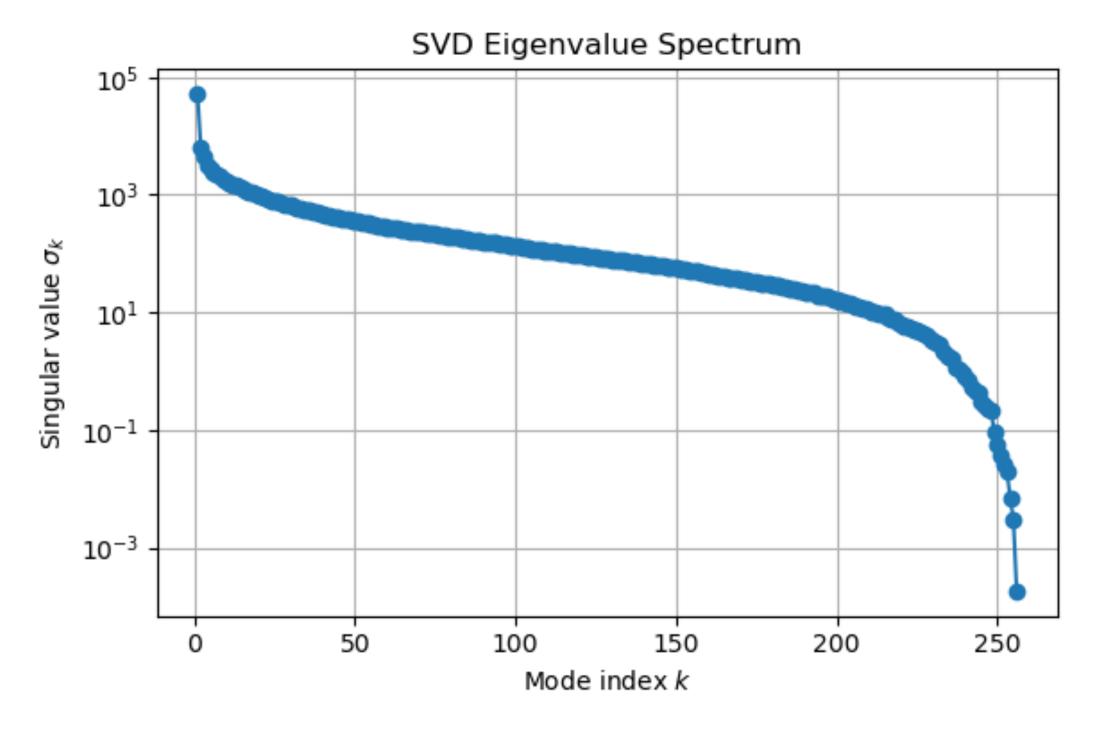


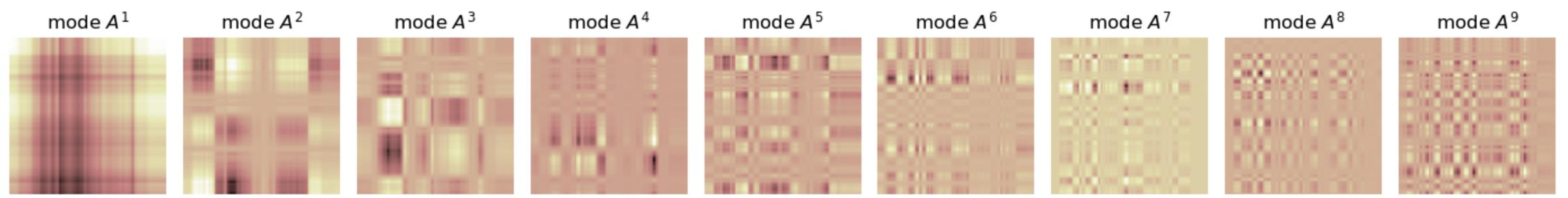
SVD of 2D Map — Modes & Eigenvalues

• Each mode map is a rank-1 matrix: $\mathbf{A}^{(k)} = \sigma_k \cdot \mathbf{u}_k \mathbf{v}_k^{\mathsf{T}}$

Reconstruct Map from SVD Modes: $\mathbf{A} pprox \sum_{k=1}^{r} \sigma_k \cdot \mathbf{u}_k \mathbf{v}_k^{\mathsf{T}}$

ullet Each mode map ${f A}^{(k)}$ captures one pattern in the data





SVD of 2D Map — Modes & Eigenvalues

Cumulative SVD Reconstructions (Every 20 Modes)

Sum of Modes 1-20

Sum of Modes 1-40

Sum of Modes 1-60

What Does SVD Do?

- The largest singular values correspond to modes that explain the most variance-dominated by foregrounds
- These dominant modes form a low-rank approximation of the foreground contamination

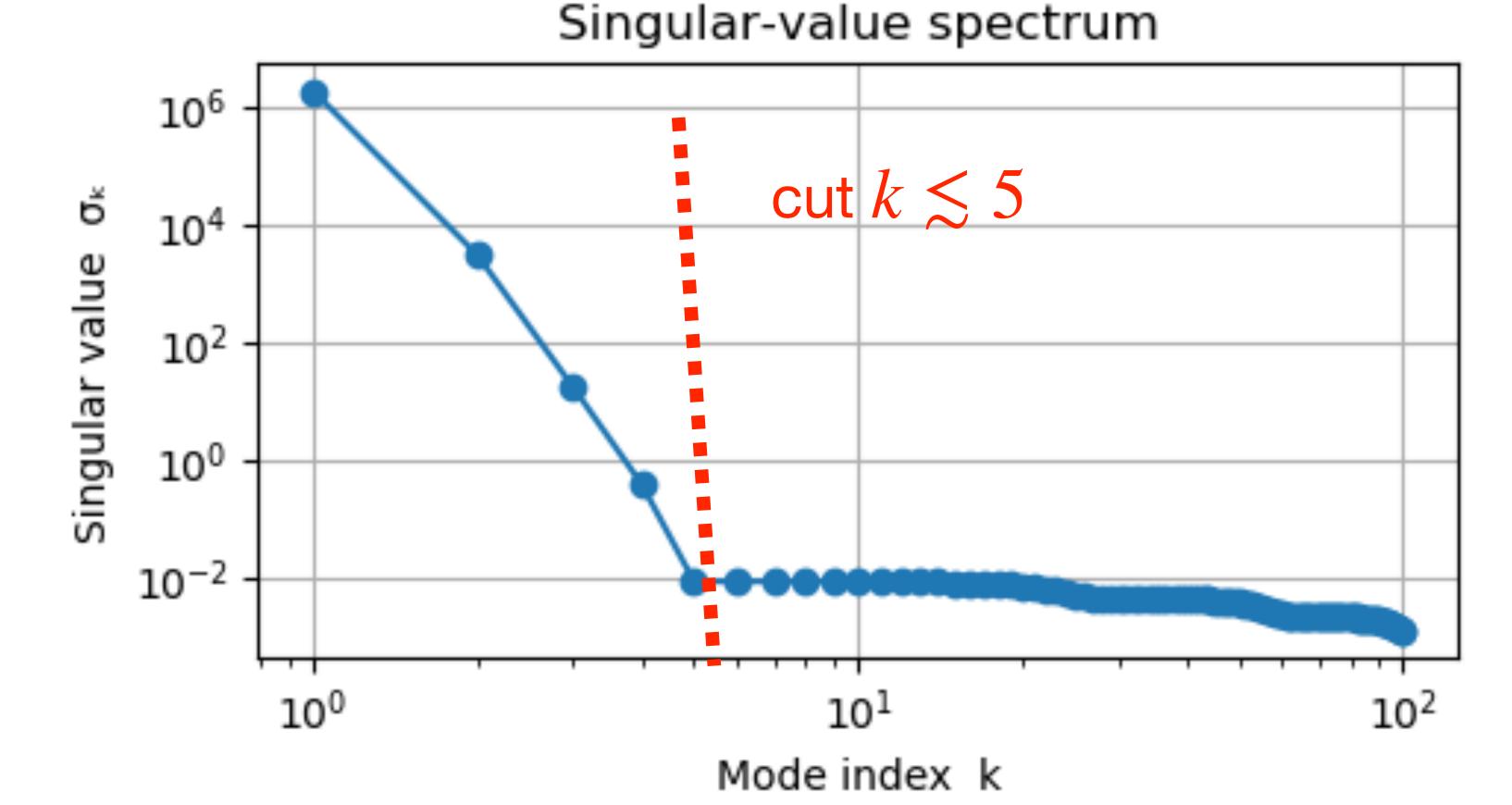
- •By selecting the first k modes (largest singular values), we isolate the foreground subspace: $\mathbf{U}_{\mathrm{fo}} = \mathbf{U}[:,:k]$
- . Projecting the data orthogonally to this subspace: $\mathbf{A}_{clean} = \left(\mathbf{I} \mathbf{U}_{fg} \mathbf{U}_{fg}^{\mathsf{T}} \right) \mathbf{A}$
- This removes the smooth foreground components, leaving behind the residuals, including the cosmological 21cm signal and noise

Data Cube Setup

Reshape the 3D cube to a 2D matrix: $\mathbf{A} \in \mathbb{R}^{N_{\nu} \times N_{\mathrm{pix}}}$, where $N_{\mathrm{pix}} = N_{\chi} \times N_{\nu}$

Apply Singular Value Decomposition: $\mathbf{A} = \mathbf{U} \mathbf{\Sigma} \mathbf{V}^{\top}$

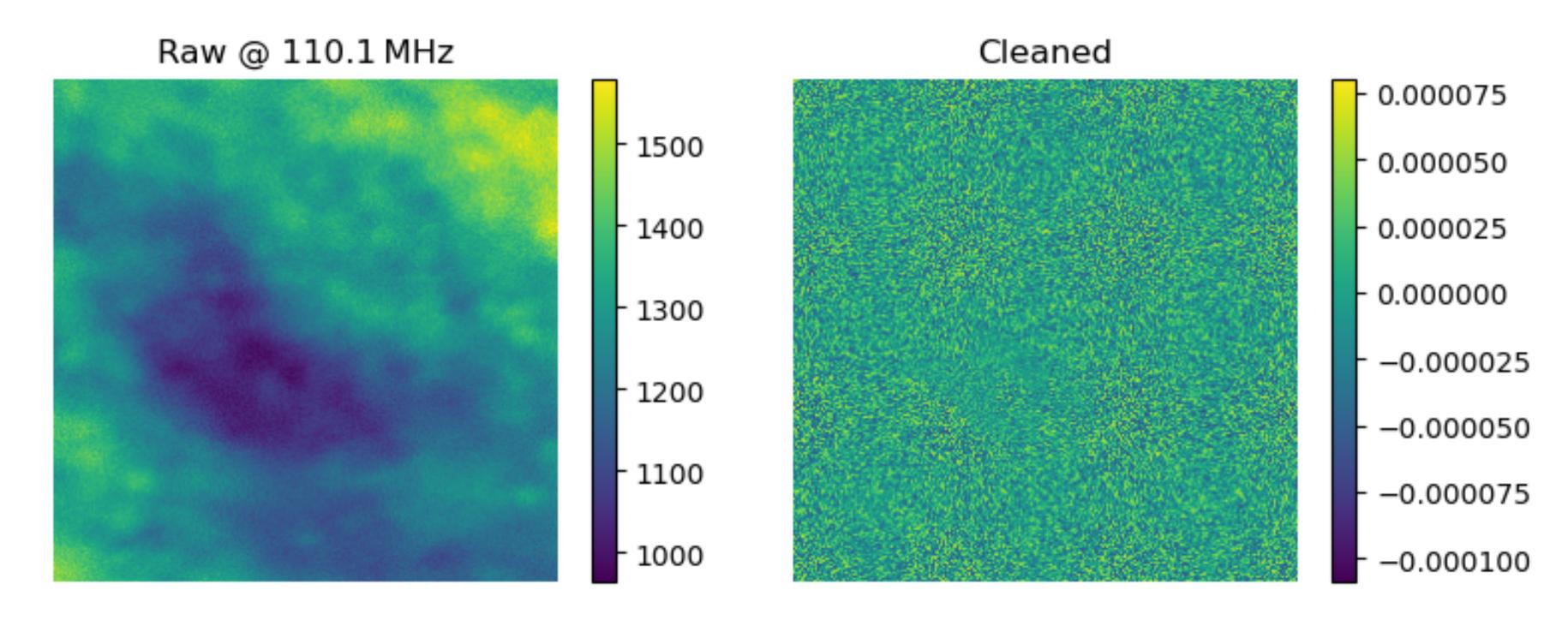
$$(\sigma_1 \ge \sigma_2 \ge \dots \ge \sigma_r \ge 0)$$

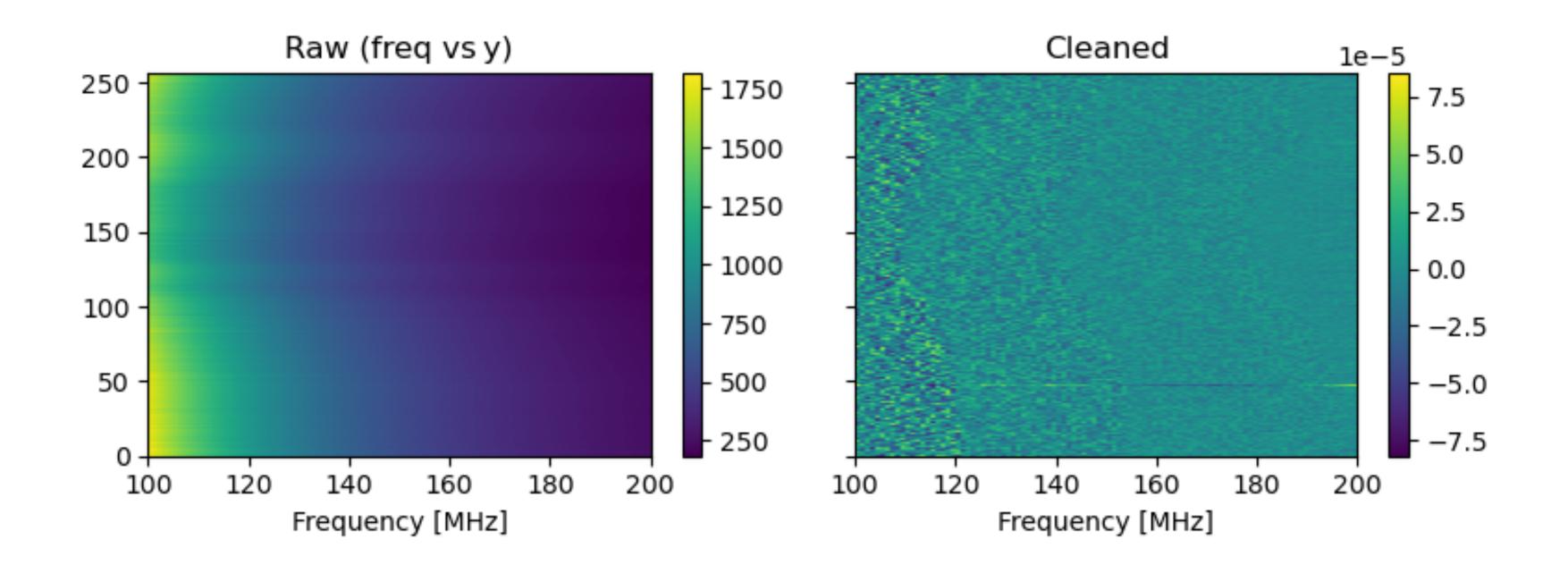


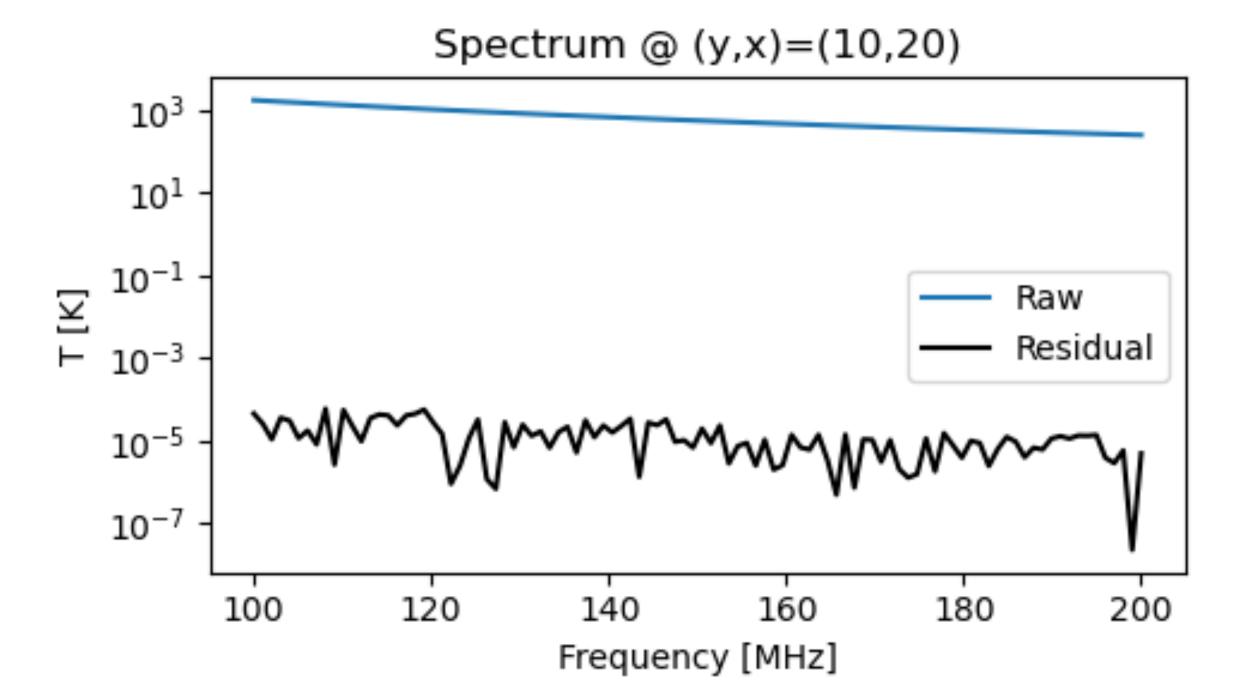
- Foregrounds lie in a low-dimensional subspace:
- Keep only k dominant modes \Rightarrow foreground modes:

$$\mathbf{A}_{\mathrm{fg}} = \sum_{i=1}^{k} \sigma_{i} \mathbf{u}_{i} \mathbf{v}_{i}^{\mathsf{T}}$$

- Cleaned data = projection orthogonal to foreground space: $\mathbf{A}_{clean} = (\mathbf{I} - \mathbf{U}_k \mathbf{U}_k^{\mathsf{T}}) \mathbf{A}$







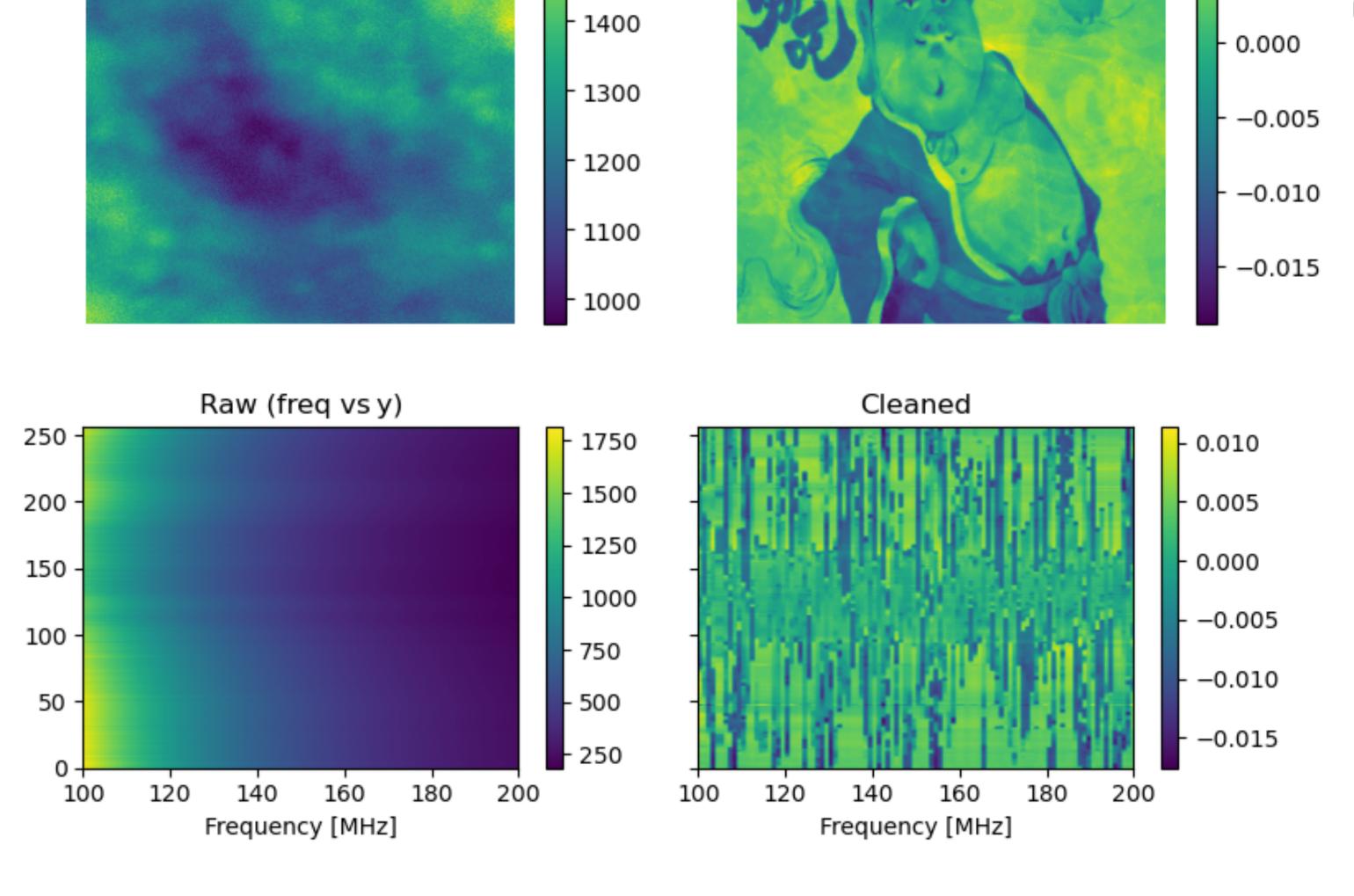
Adding EoR to data cube...

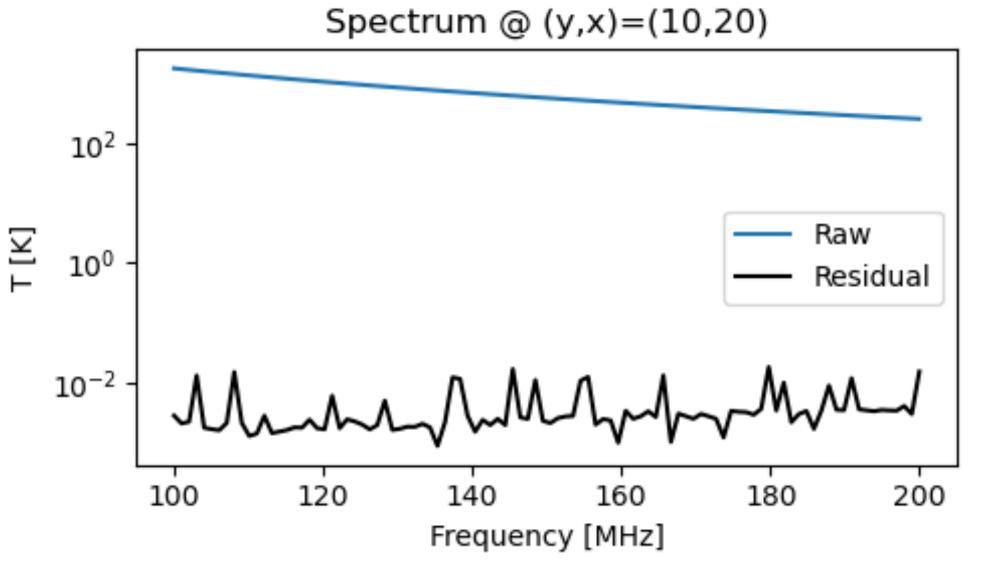
1500

Cleaned

- 0.005

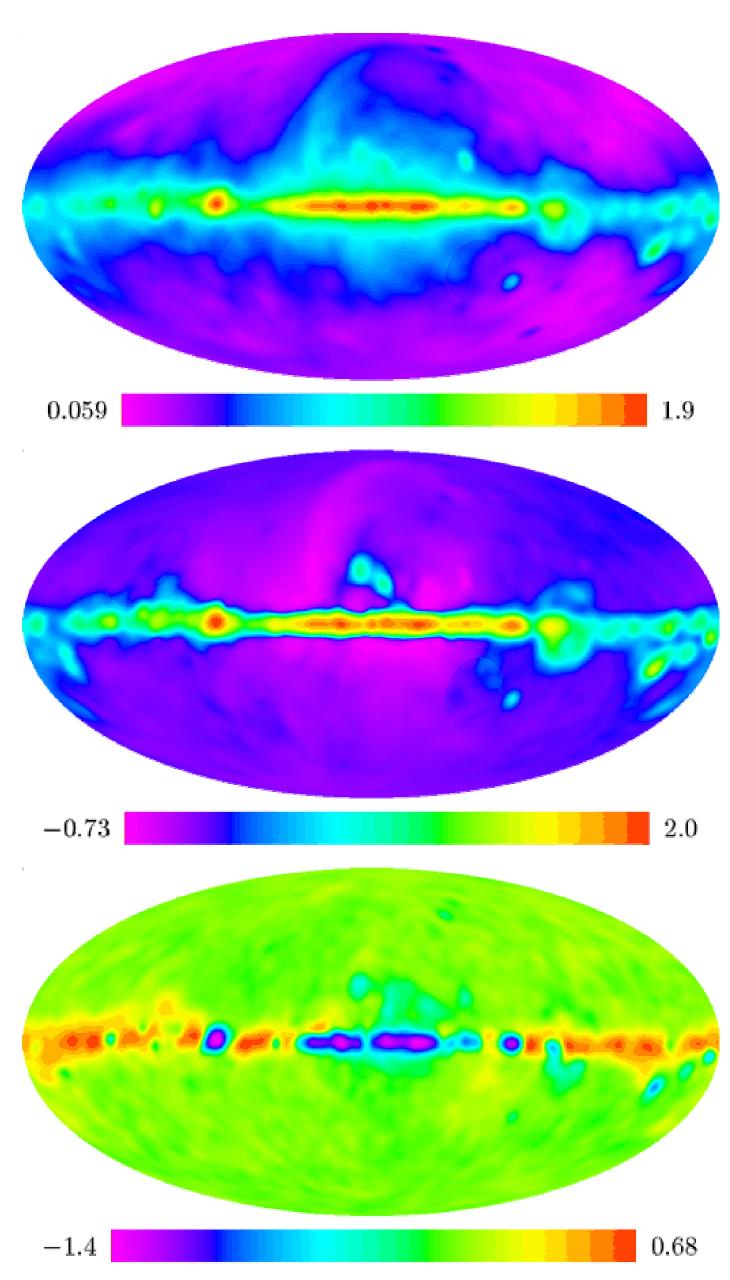
Raw @ 110.1 MHz



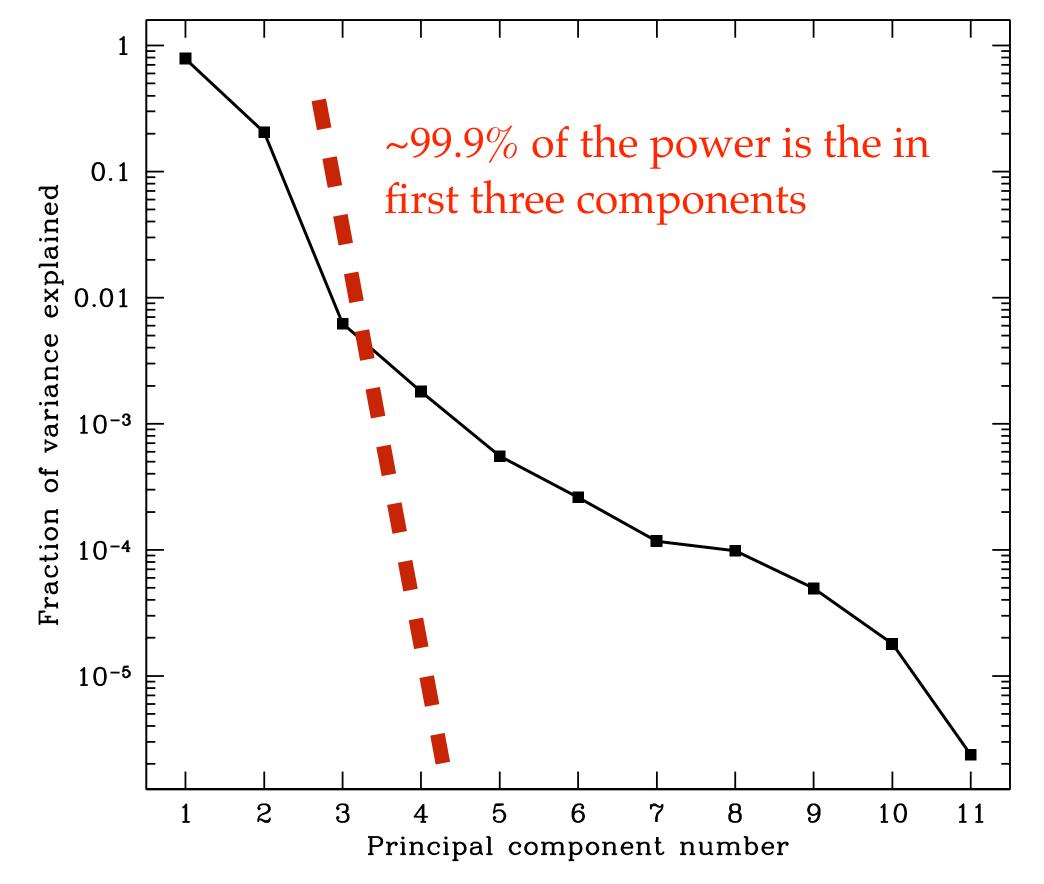


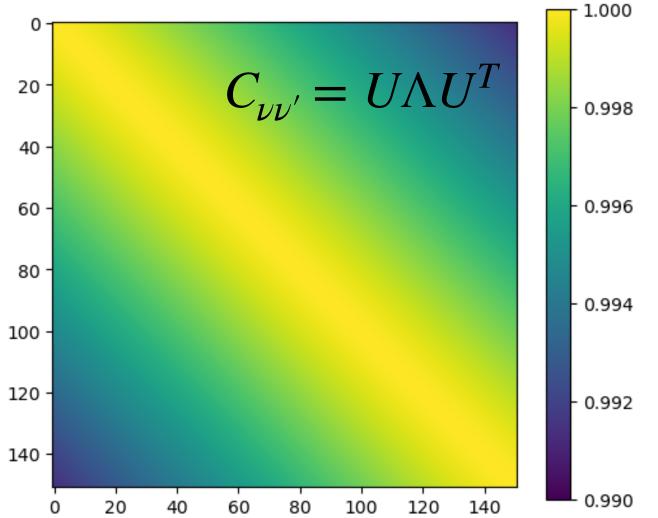
Pearson correlation coefficient r=0.96 (k=3)

PCA/SVD method



The first three principal components, which can be crudely interpreted as maps of total "stuff", synchrotron fraction and thermal dust fraction.





Blind Source Separation for Foreground Removal

In 21cm experiments, the observed brightness temperature cube T(v,x) contains:

- Bright foregrounds: galactic synchrotron, free-free emission,...
- Faint EoR signal: highly fluctuating in frequency, spatially random
- Instrumental noise

These are mixed together in the observed data, with no labels.

A two-component foreground mixing model:

$$\mathbf{X}_{N_{\nu} \times N_{\text{pix}}} = \underbrace{\begin{pmatrix} F_{1}(\nu_{1}) & F_{2}(\nu_{1}) \\ F_{1}(\nu_{2}) & F_{2}(\nu_{2}) \\ \vdots & \vdots \\ F_{1}(\nu_{N_{\nu}}) & F_{2}(\nu_{N_{\nu}}) \end{pmatrix}}_{\mathbf{A}_{N_{\nu} \times 2}} \underbrace{\begin{pmatrix} s_{F1,1} & s_{F1,2} & \cdots & s_{F1,N_{\text{pix}}} \\ s_{F2,1} & s_{F2,2} & \cdots & s_{F2,N_{\text{pix}}} \end{pmatrix}}_{\mathbf{S}_{2 \times N_{\text{pix}}}}$$

$$\begin{pmatrix}
S_{F1,1} & S_{F1,2} & \cdots & S_{F1,N_{\text{pix}}} \\
S_{F2,1} & S_{F2,2} & \cdots & S_{F2,N_{\text{pix}}}
\end{pmatrix}$$

$$\mathbf{S}_{2\times N_{\text{pix}}}$$

FastICA for Foreground Removal

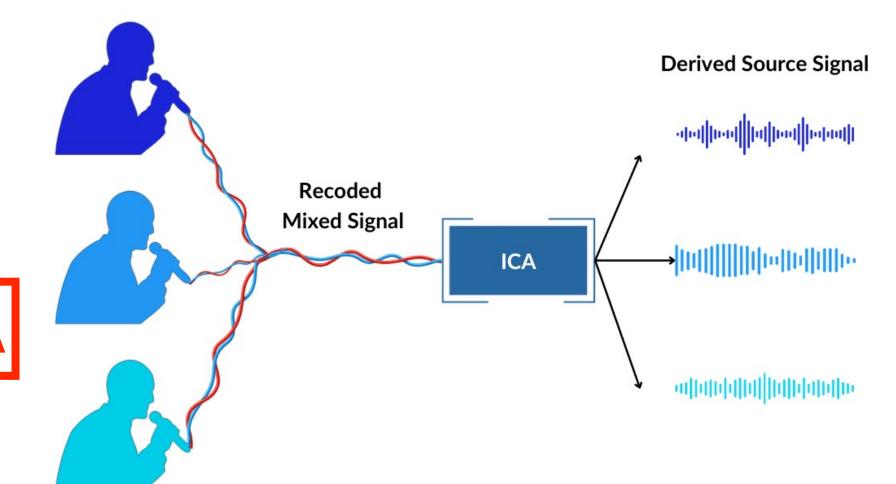
$$X = AS + N$$

Goal: Recover S without knowing A

- X: observed data (e.g., frequency × pixel matrix)
- A: unknown mixing matrix; frequency dependence for each component
- S: unknown independent sources ($s_{F1,1}$, $s_{F2,2}$ foregrounds)
- N: noise

Fast Independent Component Analysis (FastICA) helps by separating statistically independent components based on their non-Gaussianity:

- Foregrounds: spectrally smooth, large-scale coherent patterns
- ·21cm signal: spectrally fluctuating, nearly Gaussian-like, spatially incoherent



Core Principles of FastICA

- Central Limit Theorem:
 A sum of independent variables is more Gaussian than the original variables.
- To find sources, look for projections that are maximally non-Gaussian.
- · Measure of Non-Gaussianity: Kurtosis, Neg-entropy, ...
- •FastICA (Hyvärinen, 1999) can find an unmixing matrix W such that: Y=WX=WAS≈S

Advantages for 21cm Signal Recovery:

- · Model-free: no need to assume specific foreground spectra
- Efficient: much faster than iterative optimization or MCMC methods
- project out foregrounds by removing strongest independent components, leaving residuals that contain EoR + noise

FastICA: Whitening → Optimization → Extraction

1. SVD whitening:

Transform the centered data to make components uncorrelated with unit variance

•
$$\mathbf{X}_c = \mathbf{U} \mathbf{\Sigma} \mathbf{V}^T$$
, $\mathbf{Z} = \mathbf{\Sigma}^{-1} \mathbf{U}^T \mathbf{X}_c$, $\mathbf{Cov}(\mathbf{Z}) = \mathbf{I}$

2. Iterative Optimization:

• Find weight vector w that maximizes non-Gaussianity of projection $\mathbf{w}^T \mathbf{Z}$:

•
$$\mathbf{w}_{\text{new}} \leftarrow \mathbb{E}\left[\mathbf{Z} \cdot g\left(\mathbf{w}^T \mathbf{Z}\right)\right] - \mathbb{E}\left[g'\left(\mathbf{w}^T \mathbf{Z}\right)\right] \cdot \mathbf{w}$$

• g(u): non-linear function (e.g., tanh(u), u^3)

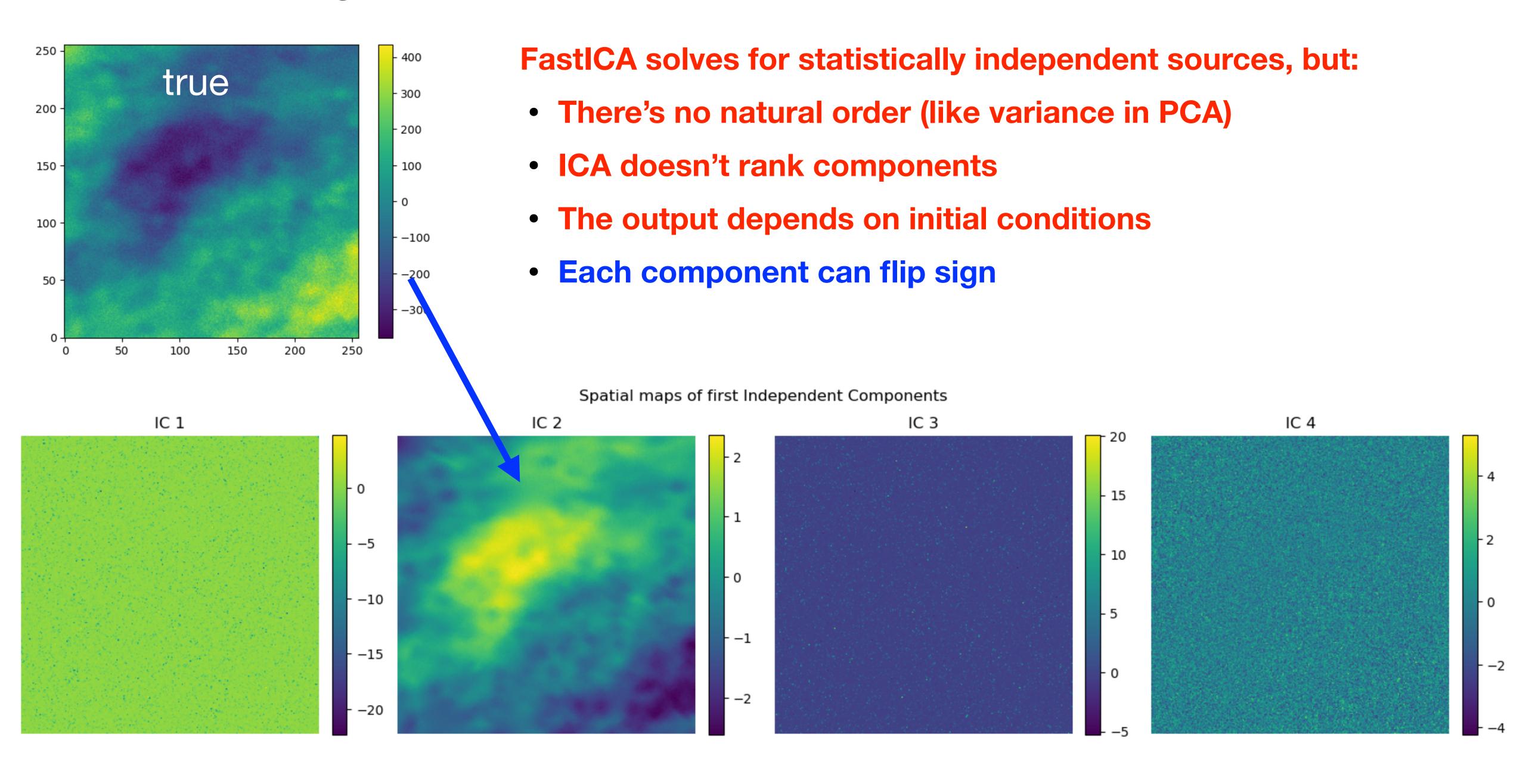
•
$$\mathbb{E}[\cdot]$$
: average over all data samples (pixels): $\mathbb{E}[f(\mathbf{z})] = \frac{1}{N_p} \sum_{j=1}^{N_p} f(\mathbf{z}_j)$

- Normalize \boldsymbol{w}_{new} and repeat until convergence

3. Extract Independent Components

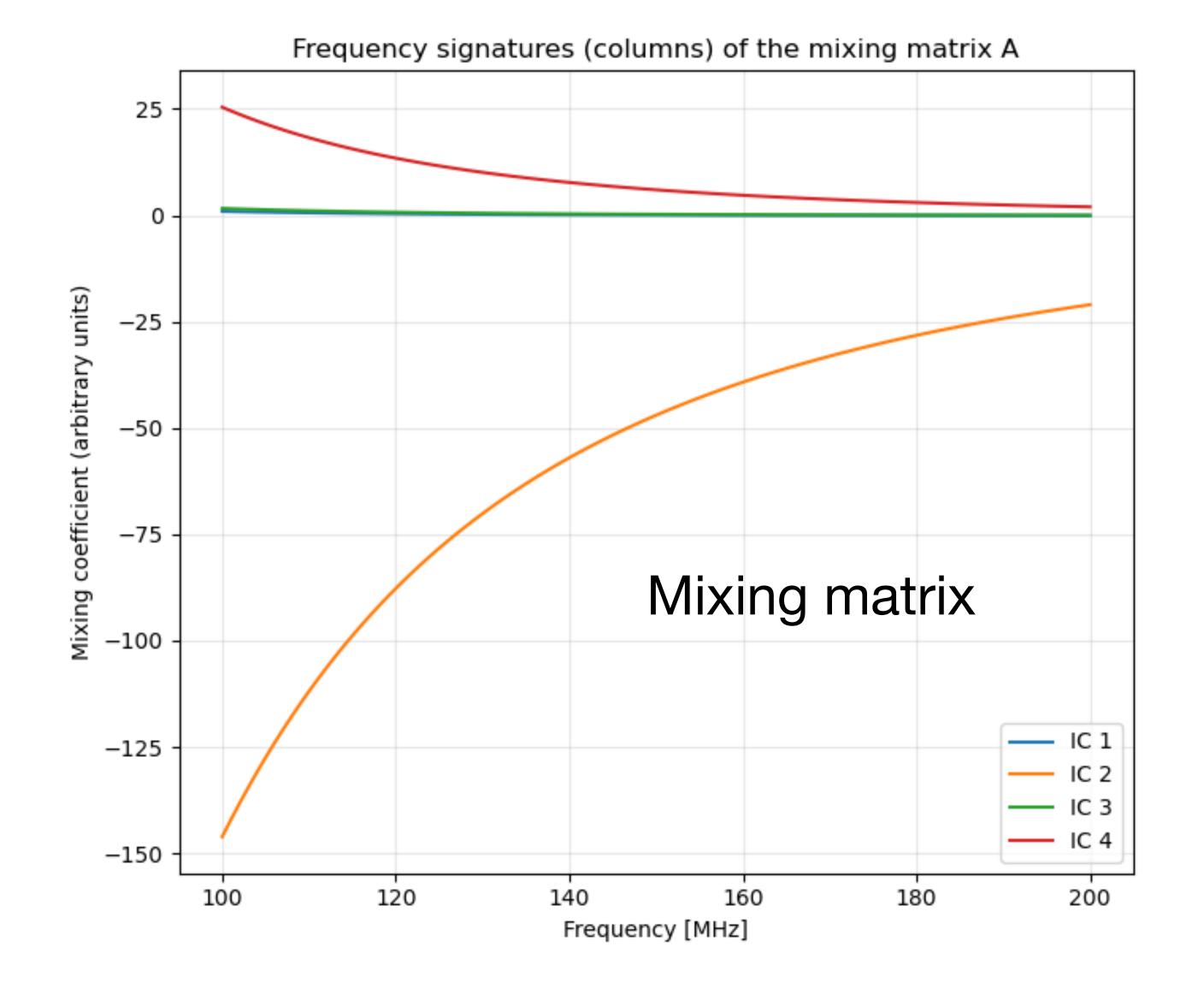
S=WZ. Rows of S statistically independent components

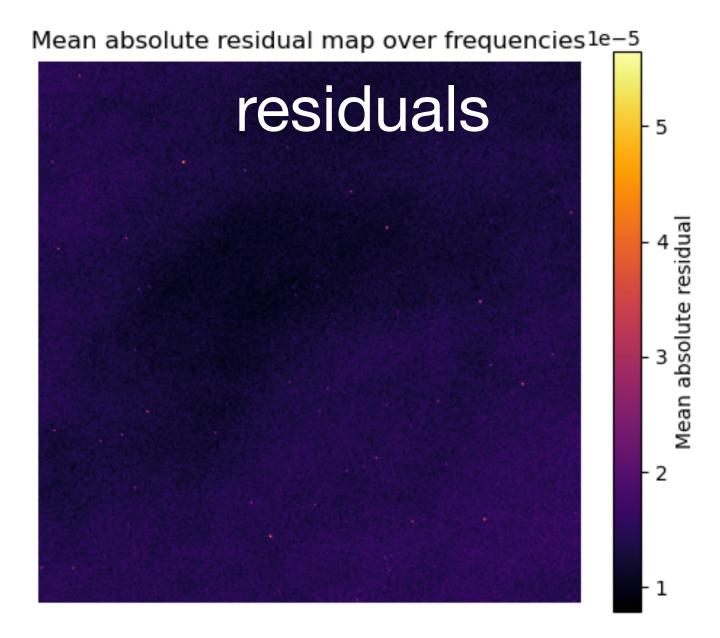
ICA on 3D Foreground Data Cube (n_comp=4)

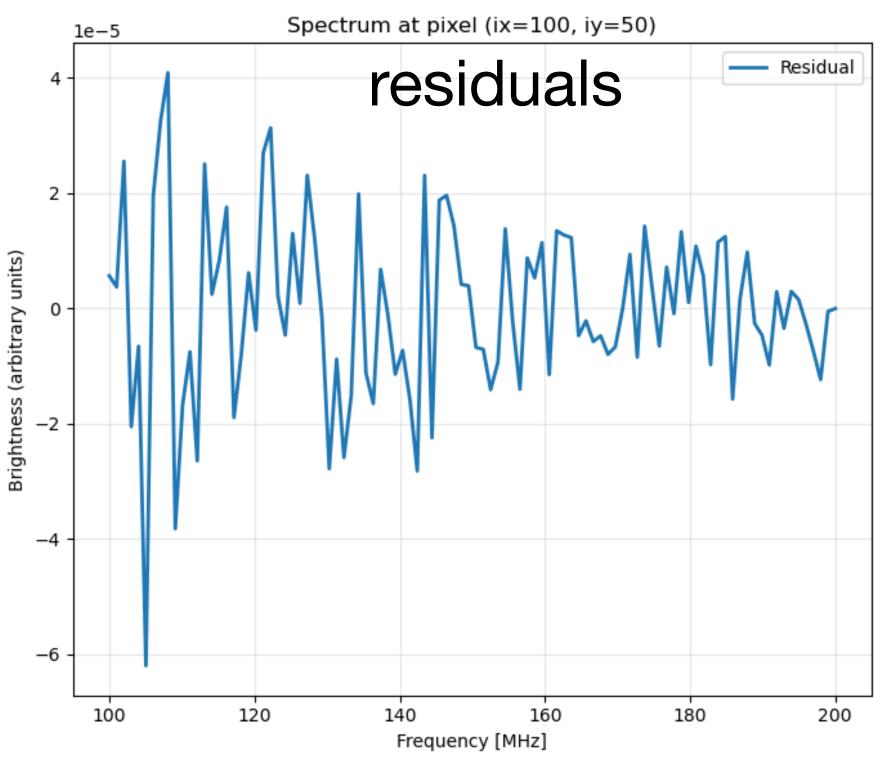


ICA on 3D Foreground Data Cube

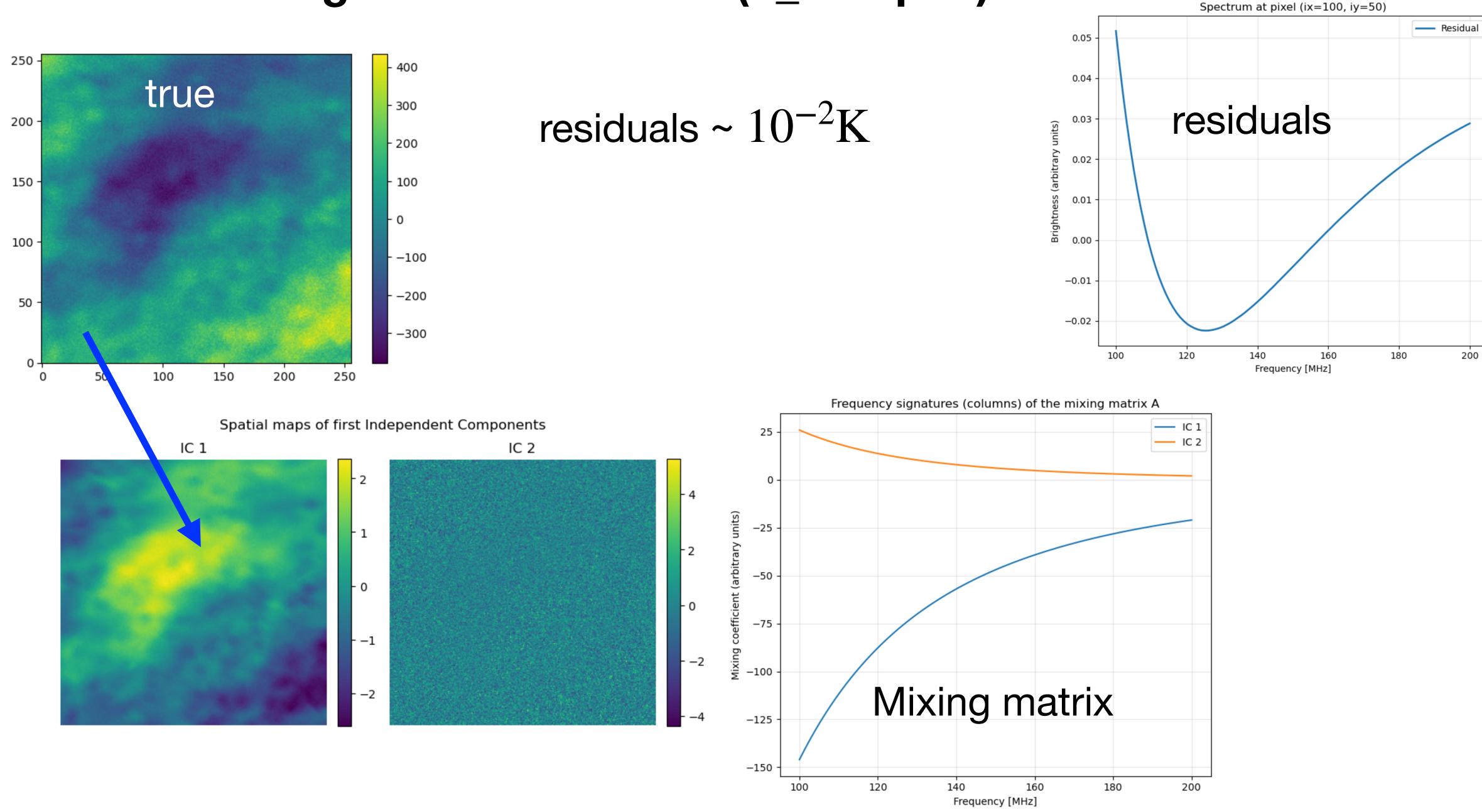
residuals ~ 10^{-5} K



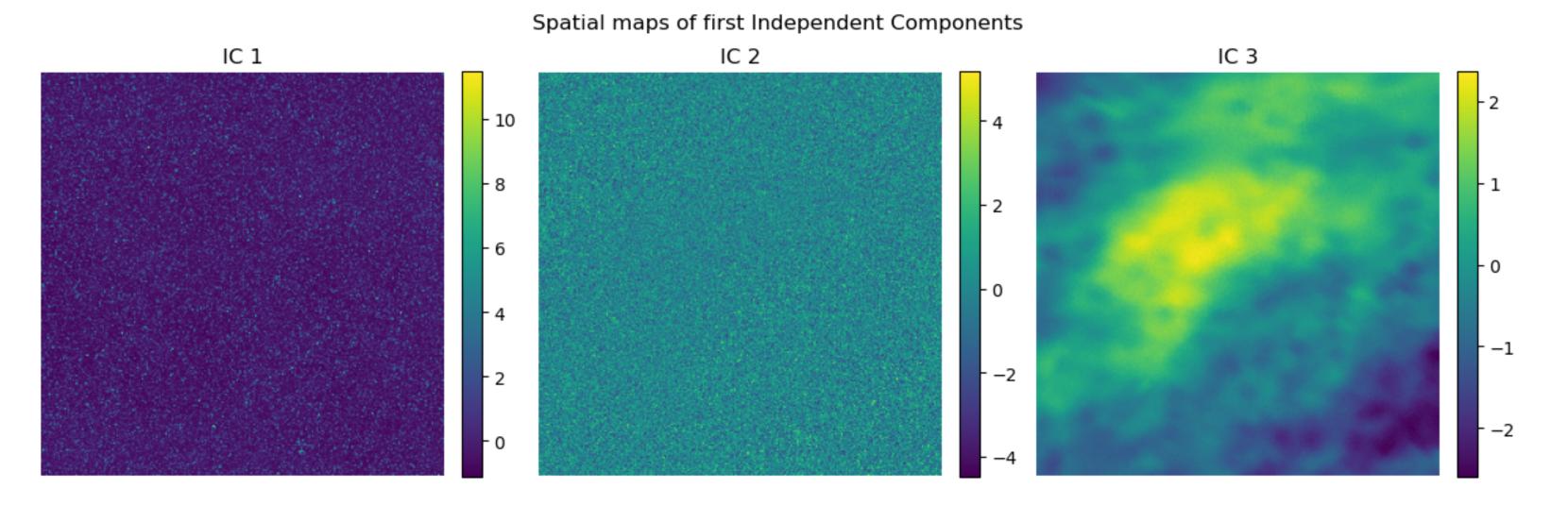


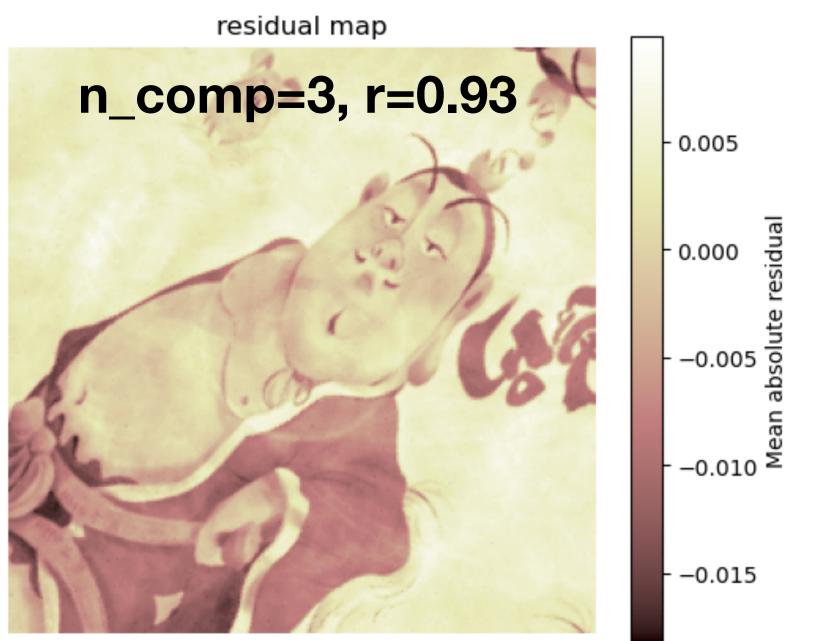


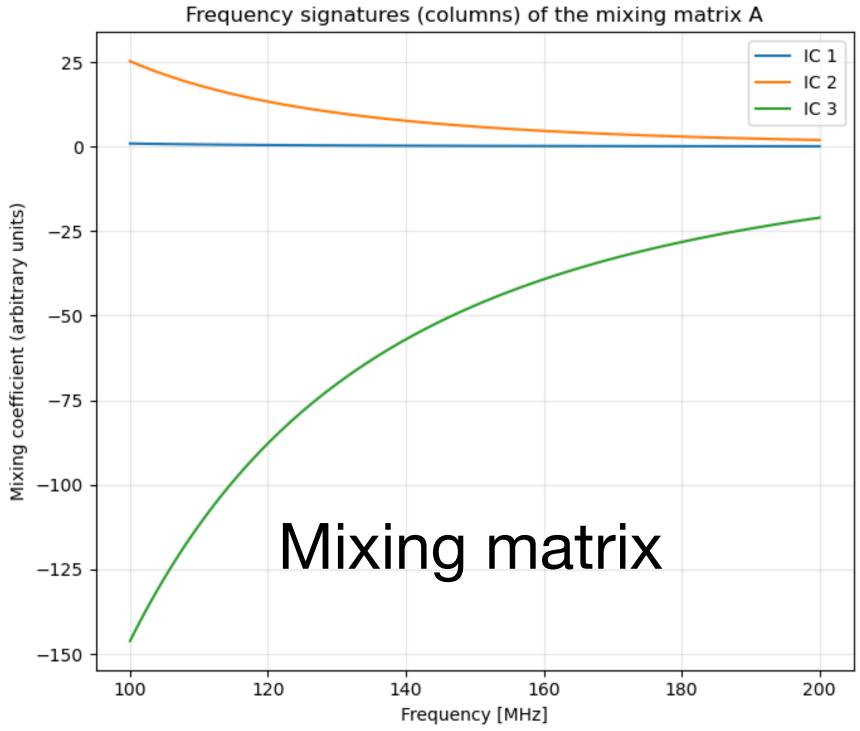
ICA on 3D Foreground Data Cube (n_comp=2)



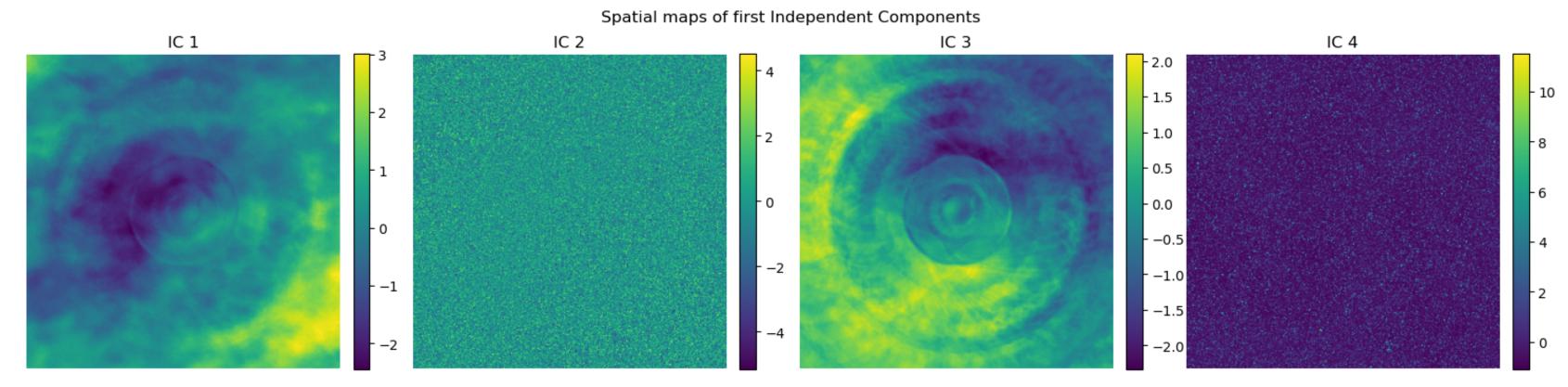
Adding EoR to data cube...



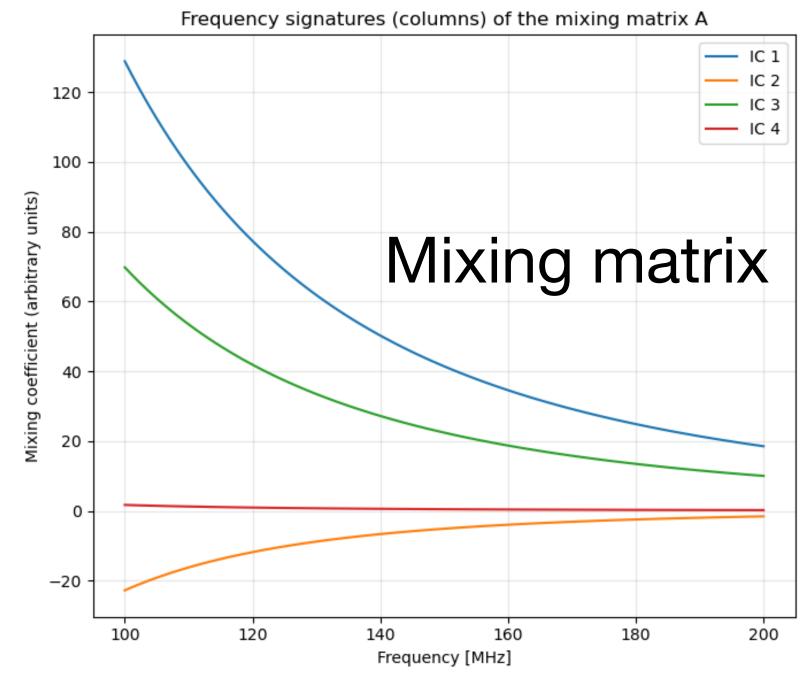


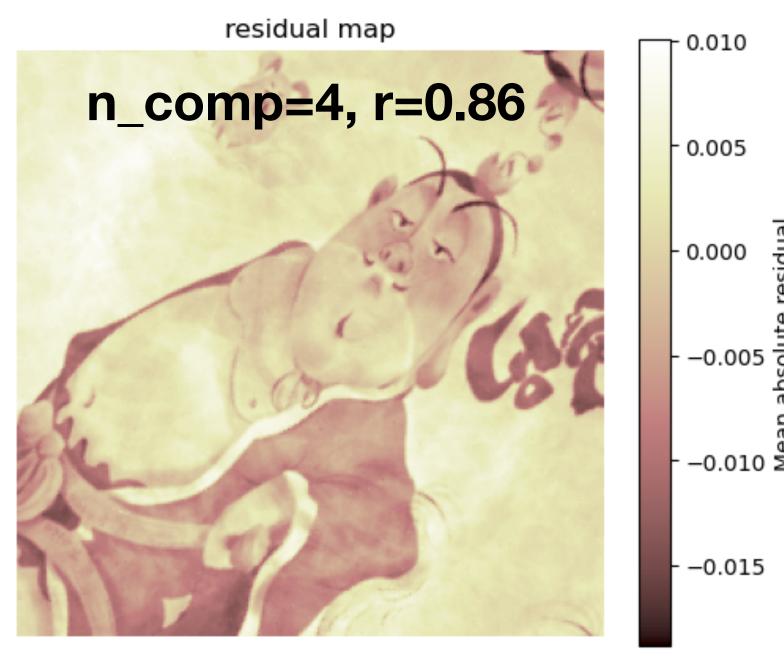


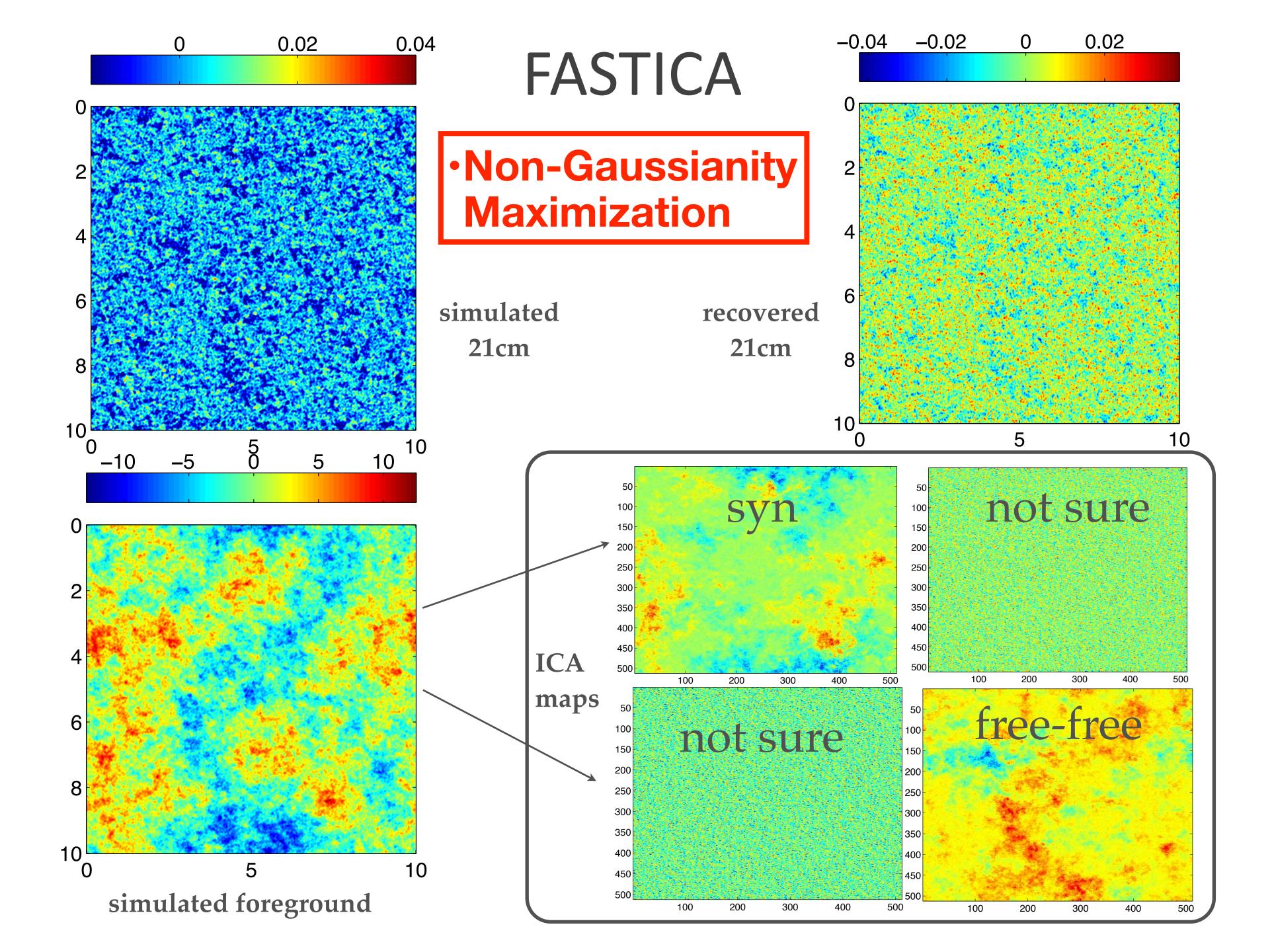
Adding EoR to data cube...



- Choosing the number of components in ICA is a critical and non-trivial decision
- Choose the smallest n_c after which residuals stop improving significantly







Karhunen-Loève Transformation for foreground removal

- Generalization of PCA/SVD
- Extract 21cm signal from bright foregrounds rather than just removing high-variance foreground modes
- KL Basis: Eigenfunctions that jointly diagonalize signal and foreground covariance
- Lead to KL modes ranked by signal-to-foreground ratio
- large S/F modes preserve 21cm signal

KL transform is optimal if covariance S and F is accurately known!

KL Generalized Eigenvalue Problem in Frequency Space

Given:

- Signal and foreground covariance: $\mathbf{C}_s = \langle \mathbf{s}\mathbf{s}^T \rangle$, $\mathbf{C}_f = \langle \mathbf{f}\mathbf{f}^T \rangle$
- Jointly diagonalize both matrices (eigenvalue problem) : $\mathbf{C}_{\!f}\mathbf{e}_i=\lambda_i\mathbf{C}_{\!s}\mathbf{e}_i$

This gives:

- λ_i : foreground-to-signal ratio for mode i
- e_i : KL eigen-mode

Interpretation:
$$F/S = \frac{\mathbf{e}_i^T \mathbf{C}_f \mathbf{e}_i}{\mathbf{e}_i^T \mathbf{C}_s \mathbf{e}_i} = \lambda_i$$

- -Modes with small λ_i are signal-rich, foreground-poor
- •Modes with large λ_i are foreground-dominated

Implementation in 21cm Analysis

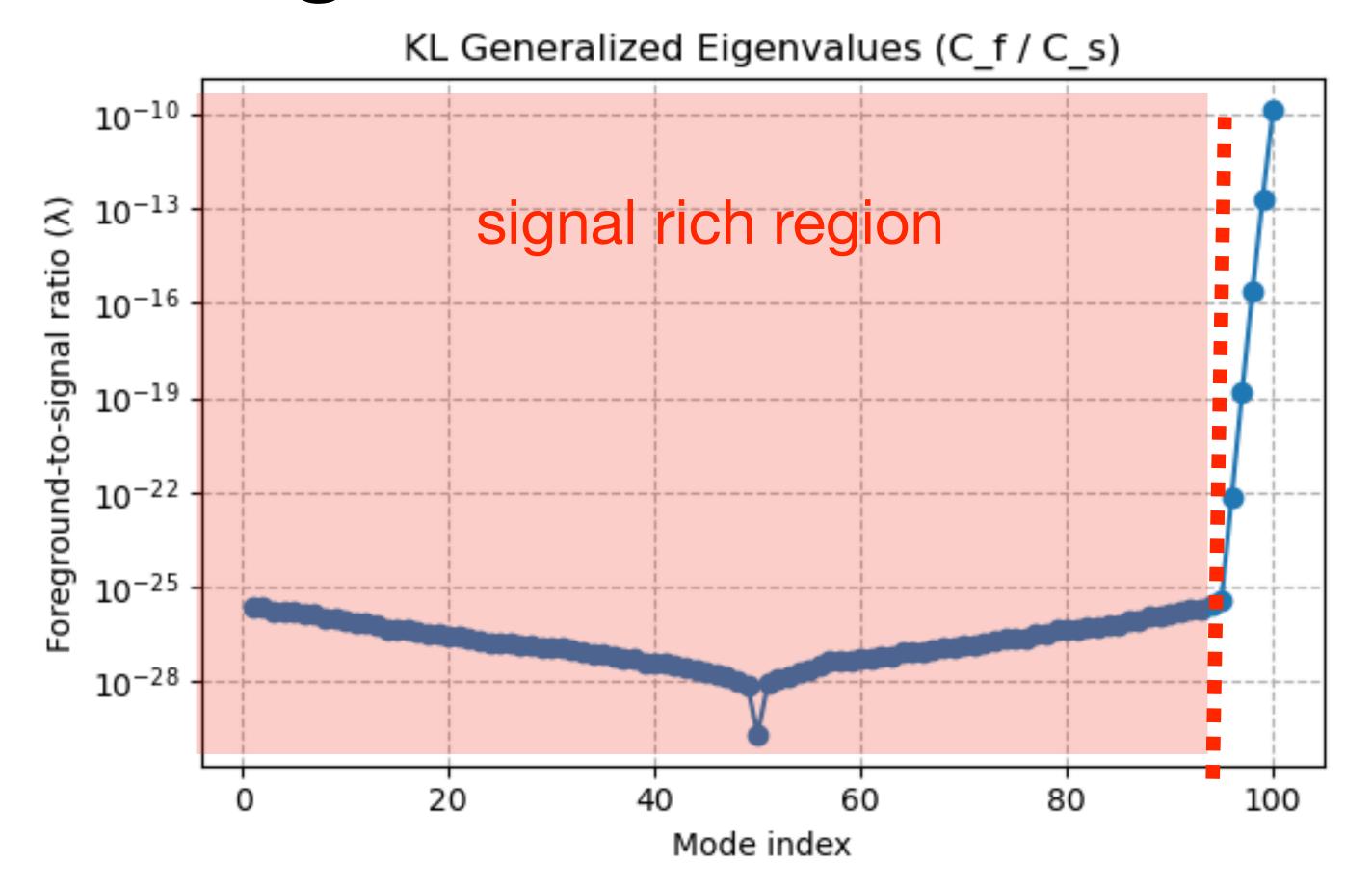
- C_s : modeled from simulations of EoR signal (Gaussian, isotropic)
- C_f : from astrophysical foreground models (e.g., correlated synchrotron model)
- Modeled analytically as $\left[C_f\right]_{\nu,\nu'} \propto \left(\frac{\nu\nu'}{\nu_0^2}\right)^{-\alpha} \exp\left(-\frac{\ln^2(\nu/\nu')}{2\xi^2}\right)$, $\left[C_s\right]_{\nu,\nu'} = A_s \exp\left(-\frac{(\nu-\nu')^2}{2\sigma_\nu^2}\right)$

Transforming the Data:

•Given observed spectrum $\mathbf{x} \in \mathbb{R}^{N_{\nu}}$, we project onto KL basis: $y_i = \mathbf{e}_i^T \mathbf{x}$ (KL coefficient for mode i)

To reconstruct a cleaned signal:
$$\mathbf{x}_{\mathrm{clean}} = \sum_{\lambda_i < \lambda_{\mathrm{cut}}} y_i \mathbf{e}_i$$

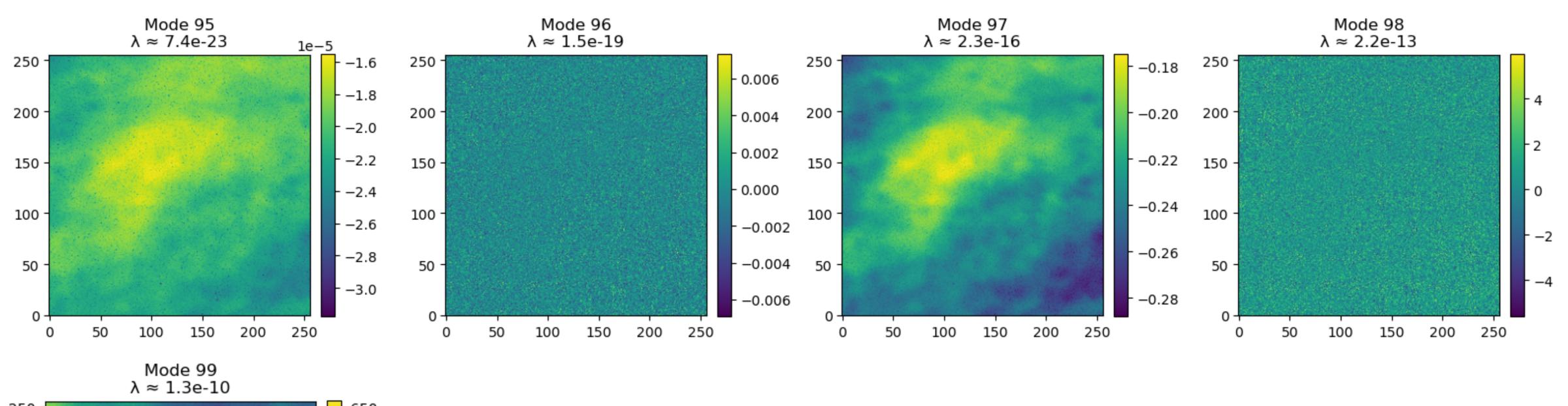
KL on 3D Foreground Data Cube

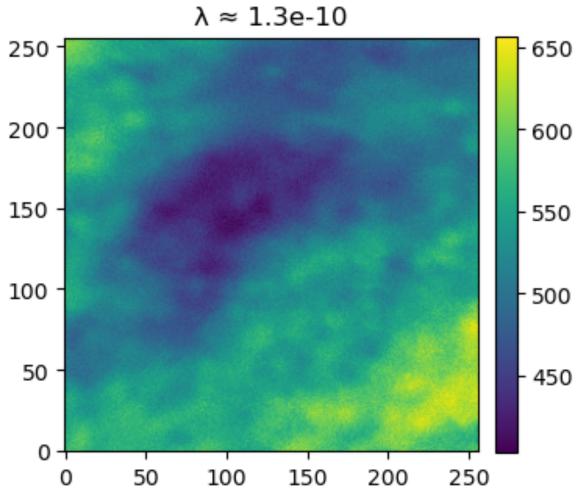


- If eigenvalues are well separated (large gaps), the eigenvectors and eigenvalues are stable under small perturbations
- The cleaned data cube is less sensitive to model uncertainties in $\mathbf{C}_{\!\scriptscriptstyle S}$ and $\mathbf{C}_{\!\scriptscriptstyle f}$

Last 5 KL Component Maps (Fg rich)

Last 5 KL Component Maps at v = 150.5 MHz

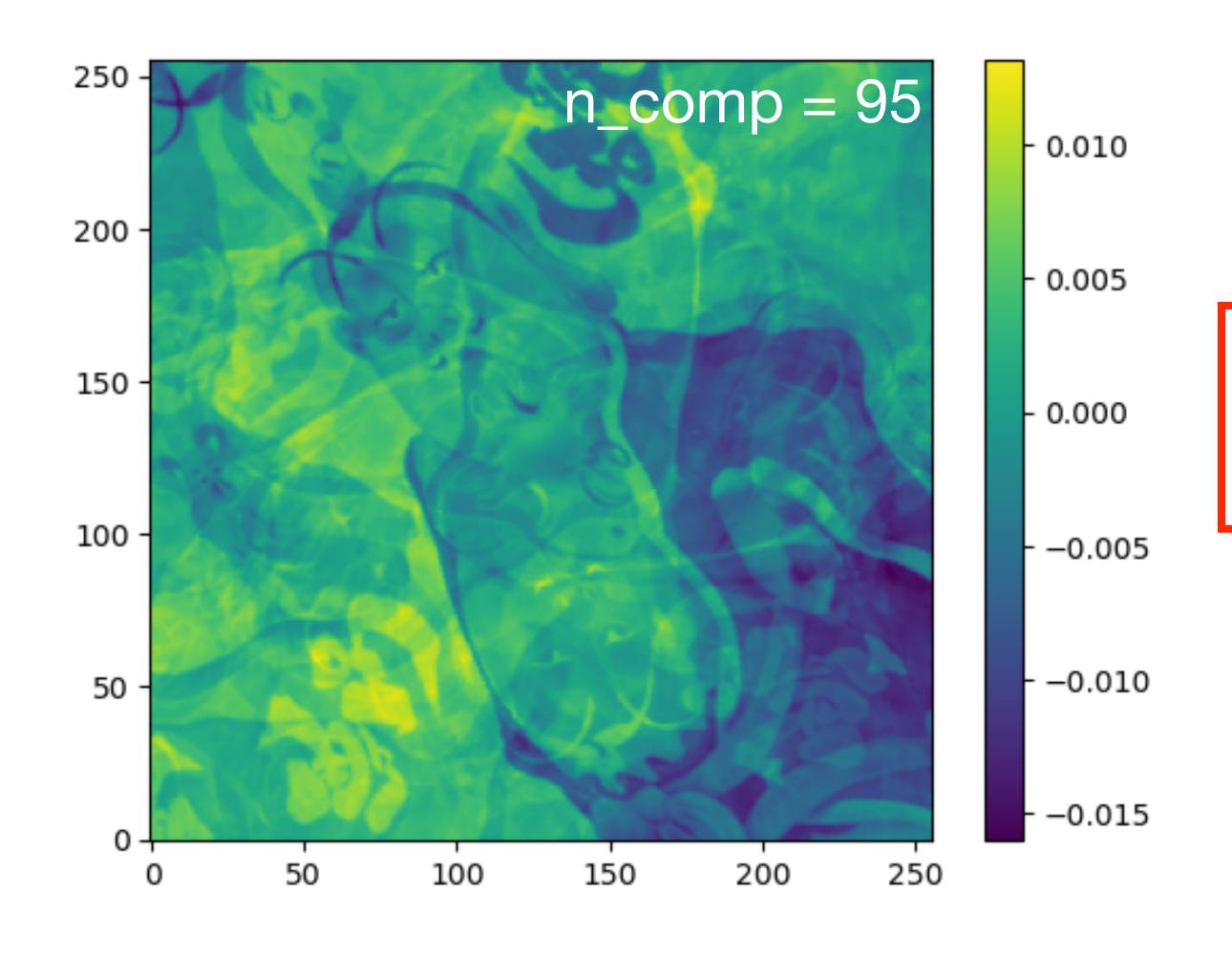




•These modes have the highest foreground-tosignal ratios and primarily capture foreground contamination.

Adding EoR to data cube...

Pearson correlation coefficient =0.95



Despite inaccuracies in the signal model, the KL method can still recover the signal effectively

Adding noise to data cube...

 If noise covariance is known, KL can optimally separate signal, foreground, and noise—enhancing noise rejection and signal recovery.

- Form the Total Noise + Foreground Covariance:
- $\mathbf{C}_b = \mathbf{C}_f + \mathbf{C}_n$
- Solve Generalized Eigenvalue Problem:
- $\mathbf{C}_b \mathbf{e} = \lambda \mathbf{C}_s \mathbf{e}$
- This finds eigenmodes that optimally separate signal from combined foreground + noise.
- Project data onto eigenmodes and filter modes with large λ (foreground + noise dominated) to clean the signal.

Gaussian Process Regression (GPR) for 21cm Foreground Subtraction

Intuition:

- Think of a Gaussian Process as an infinite collection of correlated Gaussian random variables, one for each value of ν .
- For any set of input points $\{\nu_1, \nu_2, ..., \nu_n\}$, the vector:

$$f(\nu_1), f(\nu_2), ..., f(\nu_n)$$
 is jointly Gaussian-distributed with:

Mean =
$$\mu(\nu)$$
, Covariance = $K\left(\nu_i, \nu_j\right)$

• Foregrounds vary smoothly with frequency and the kernel ${\cal K}$ can capture this smoothness

Gaussian Process Regression (GPR) for 21cm Foreground Subtraction

What is GPR?

- GPR is a Bayesian, non-parametric regression method for modeling smooth functions
- Models functions as distributions over smooth curves: $f(\nu) \sim \mathbf{GP}\left(\mu, K(\nu, \nu')\right)$
- Uses a kernel function K to define correlations between data points (e.g., between frequencies)
- Covariance $K(\nu, \nu')$: kernel encodes smoothness
- · Outputs both a mean prediction (foreground model) and uncertainty

GPR Kernel Choice - RBF vs. Matérn

• RBF (Squared Exponential) Kernel:
$$K_{\text{RBF}}(\nu,\nu') = \sigma_{\!f}^2 \exp\left(-\frac{(\nu-\nu')^2}{2\ell^2}\right)$$

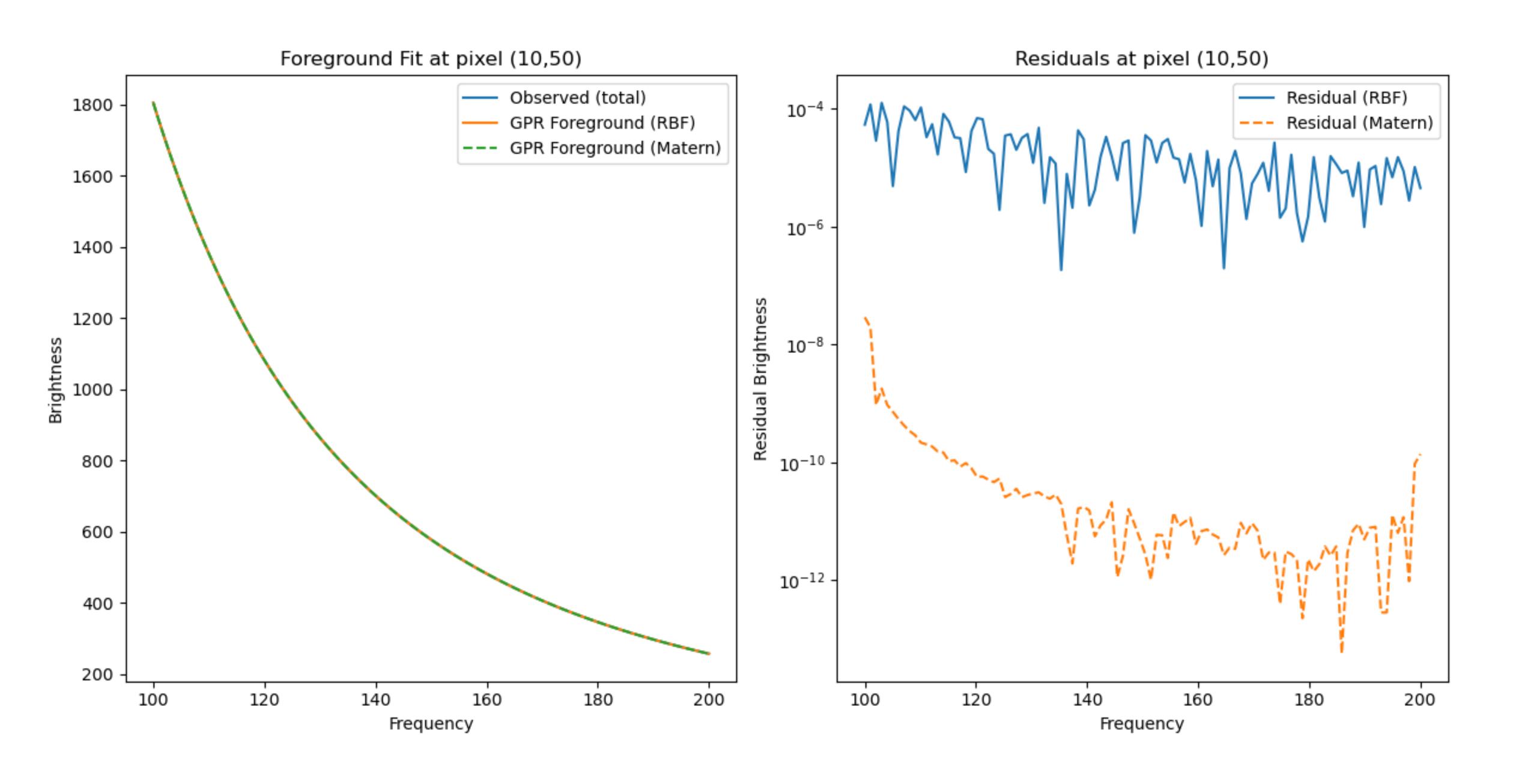
- Infinitely differentiable (very smooth)
- Can over-smooth and remove real 21 cm signal (especially low- $k_{||}$)

$$\mathbf{v=1.5}: K(\nu, \nu') = \sigma_f^2 \left(1 + \frac{\sqrt{3}r}{\ell} \right) \exp\left(-\frac{\sqrt{3}r}{\ell} \right), \mathbf{v=0.5}: K(\nu, \nu') = \sigma_f^2 \exp\left(-\frac{r}{\ell} \right)$$

• For a dataset y observed at inputs ${\bf X}$, the \log marginal likelihood is:

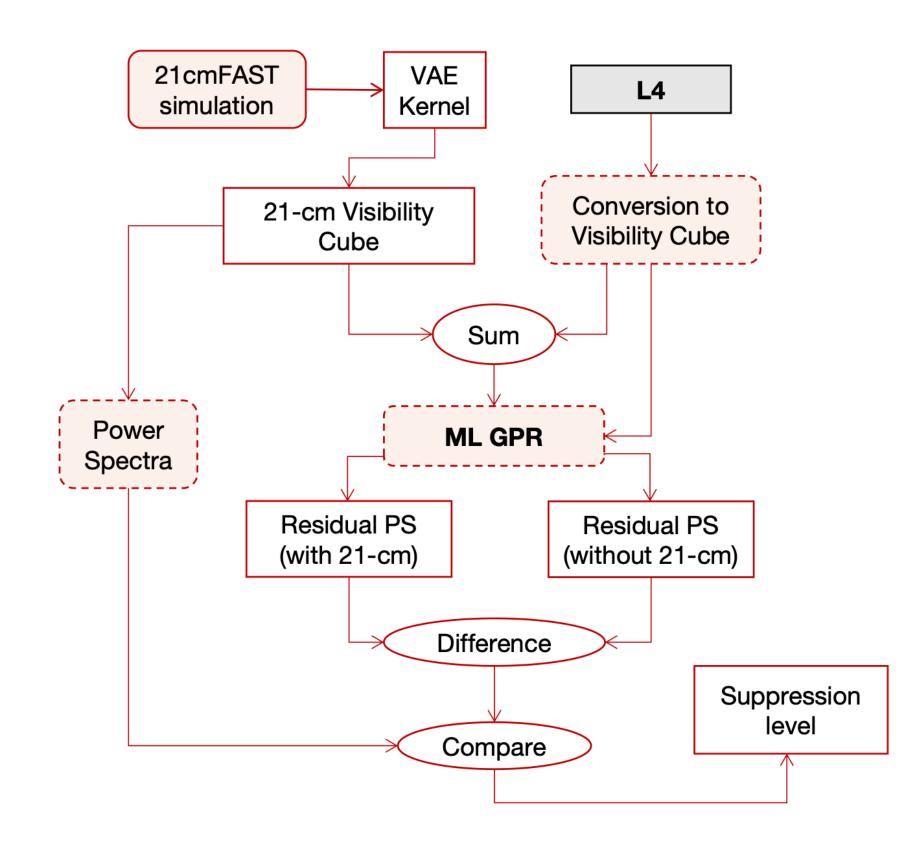
$$\log p(\mathbf{y} \mid \mathbf{X}, \theta) = -\frac{1}{2} \mathbf{y}^{\mathsf{T}} \mathbf{K}^{-1} \mathbf{y} - \frac{1}{2} \log |\mathbf{K}| - \frac{n}{2} \log(2\pi)$$

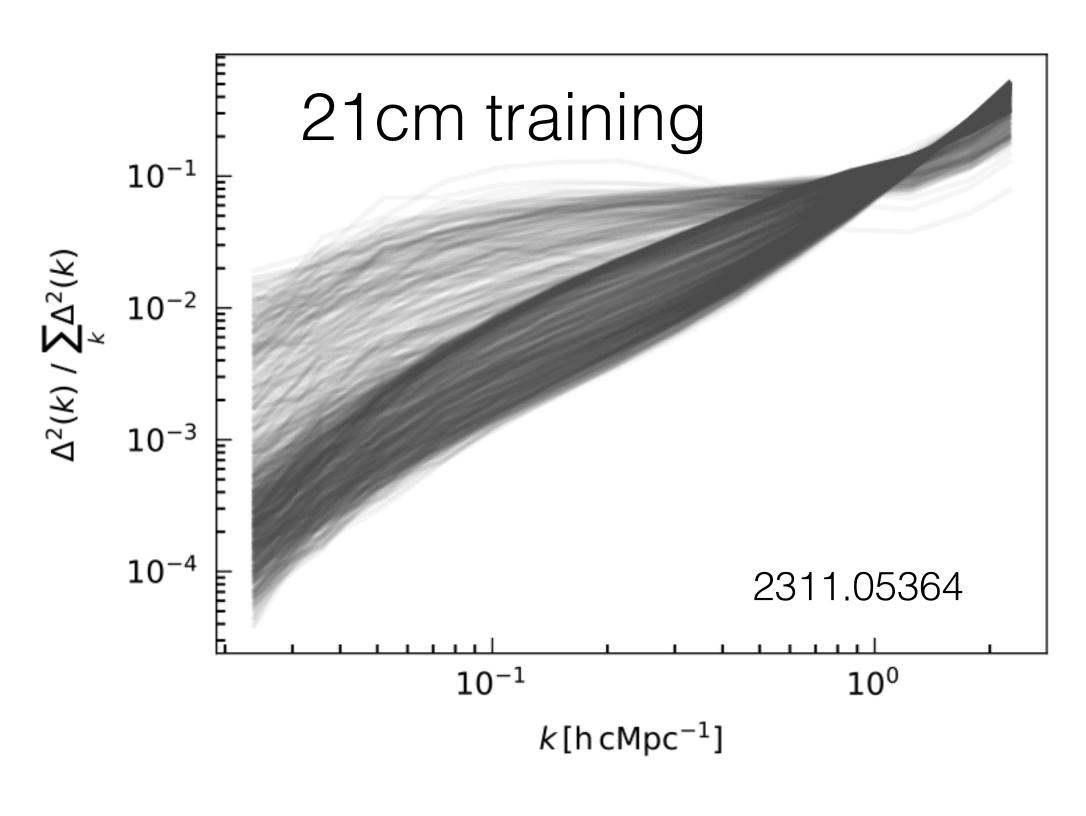
This acts as an objective function for hyperparameter optimization



Machine learning GPR

Component	Covariance	Parameter	Description	Prior Bounds	Estimated Value
Intrinsic foregrounds	Radial Basis Function	$\sigma_{ ext{int}}^2 \ l_{ ext{int}}$	Variance Lengthscale	[-1,1] [20,40]	-0.1 ± 0.02 32.9 ± 1.4
Mode-mixing foregrounds	Radial Basis Function	$\sigma_{ m mix}^2 \ l_{ m mix}$	Variance Lengthscale	[-2,0] [0.1,0.5]	-1.32 ± 0.01 0.275 ± 0.001
21-cm signal	Trained ML Kernel	$x_1 \\ x_2 \\ \sigma_{21}^2$	Latent space dimension Latent space dimension Variance	[-4,4] [-4,4] [-7,-1]	- - < -4.97
Excess power	Exponential Function	$\sigma_{ m ex}^2 \ l_{ m ex}$	Variance Lengthscale	[-3,-1] [0.2,2]	-1.88 ± 0.02 0.56 ± 0.03

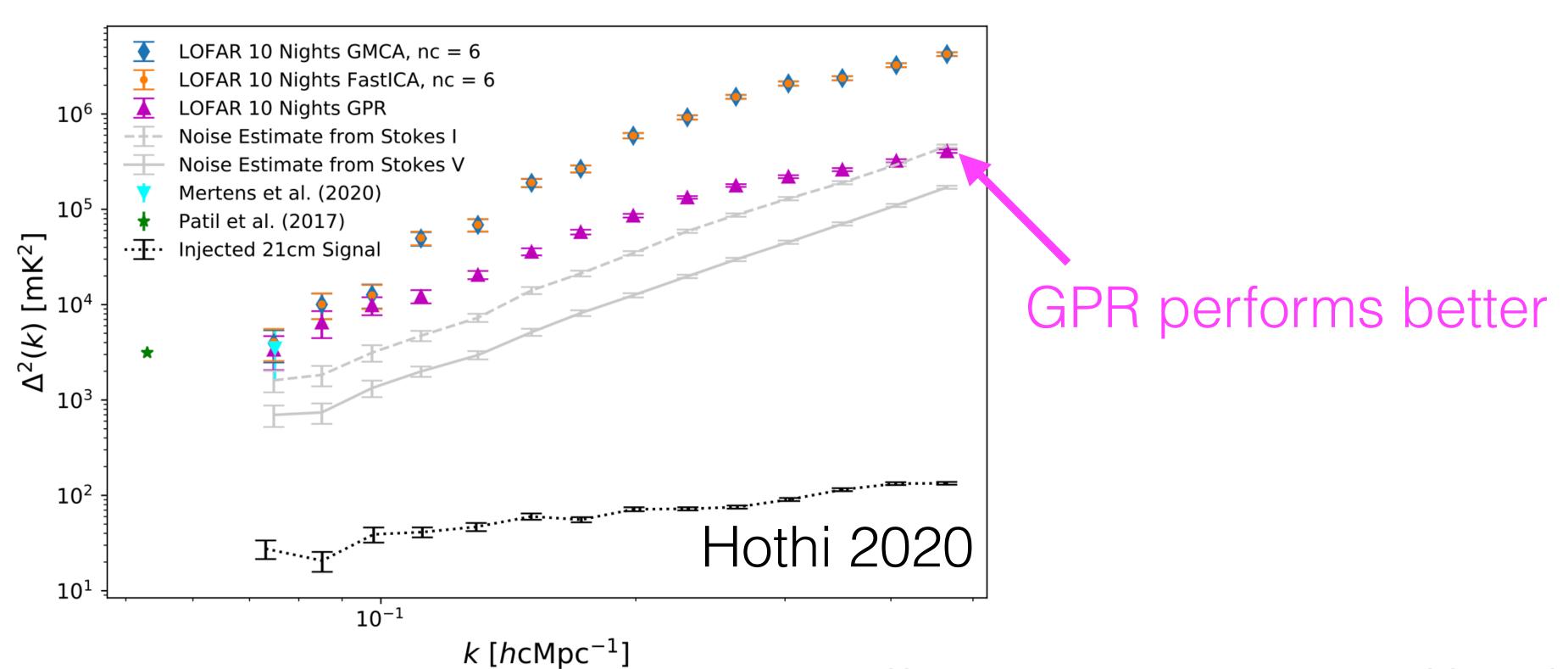




Gaussian process regression on LOFAR

$$\kappa_{Matern}(r) = \frac{2^{1-\nu}}{\Gamma(\nu)} \left(\frac{\sqrt{2\nu}r}{l}\right)^{\nu} K_{\nu} \left(\frac{\sqrt{2\nu}r}{l}\right) \qquad E(\mathbf{f}_{fg}) = K_{fg} \left[K_{fg} + K_{21} + K_{n}\right]^{-1} \mathbf{d},$$

$$\left[\frac{\mathbf{d}}{\mathbf{f}_{fg}}\right] \sim \mathcal{N}\left(\begin{bmatrix}0\\0\end{bmatrix}, \begin{bmatrix}K_{fg} + K_{21} + \sigma_n^2 I & K_{fg}\\K_{fg} & K_{fg}\end{bmatrix}\right), \qquad \operatorname{cov}(\mathbf{f}_{fg}) = K_{fg} + K_{fg}\left[K_{fg} + K_{21} + K_{n}\right]^{-1}K_{fg}.$$

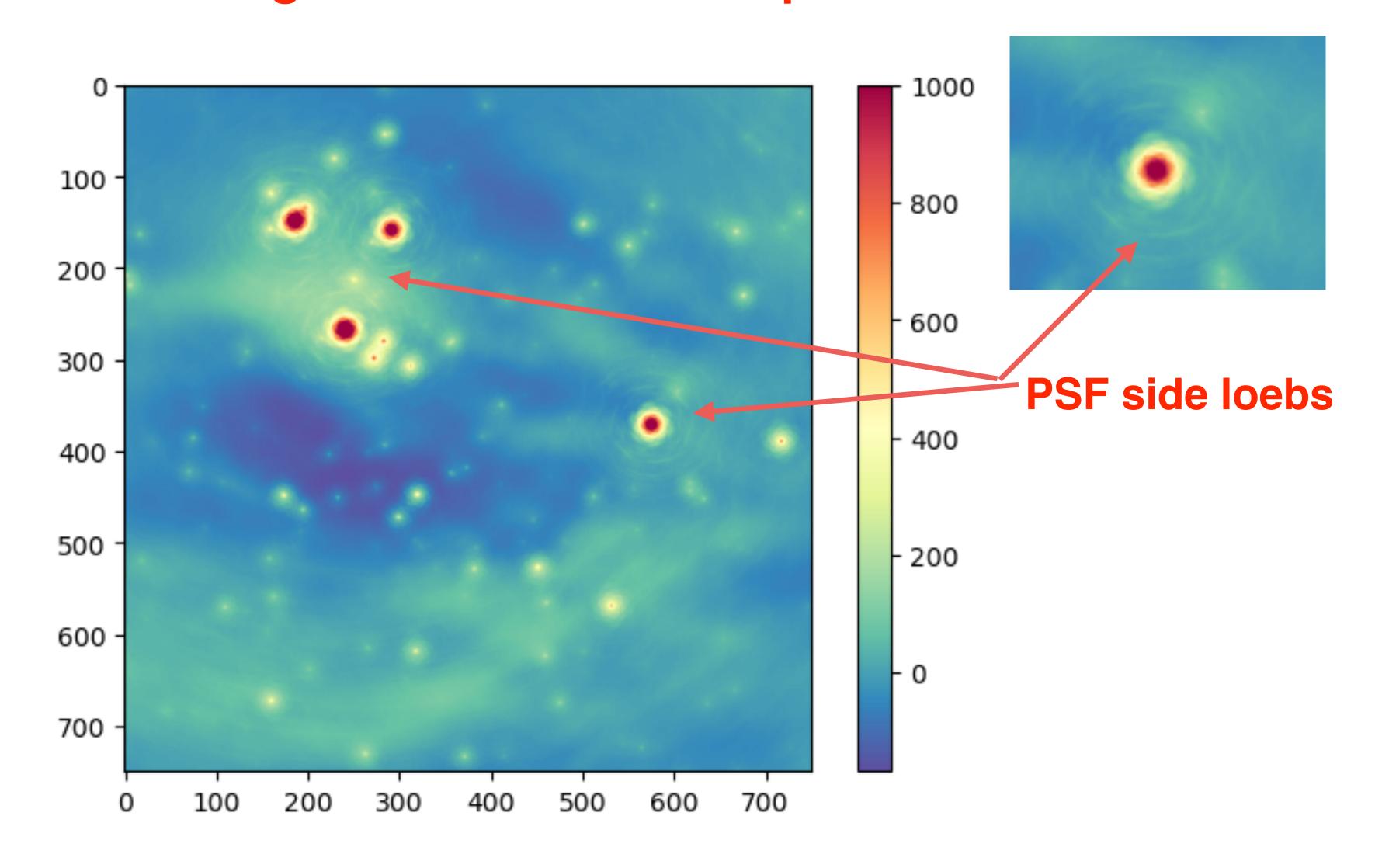


https://sheffieldml.github.io/GPy/

In a realistic situtation...

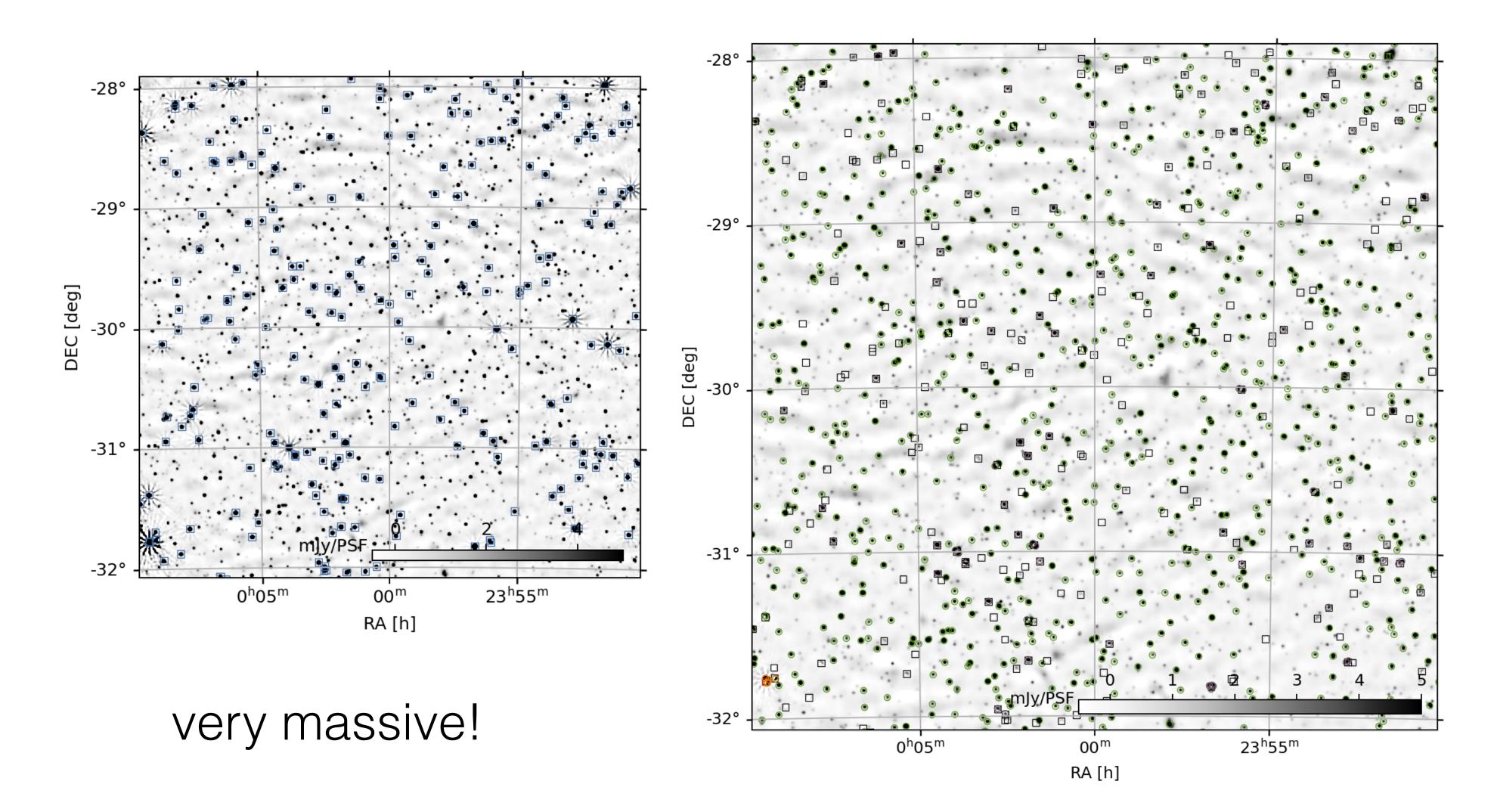
Challenge: frequency-dependent PSF

 \rightarrow mode-mixing \rightarrow non-smooth FG spectrum



Compact sources detected for subtraction —DOTSS-21 team

Iteratively subtract point sources and refine the FG model

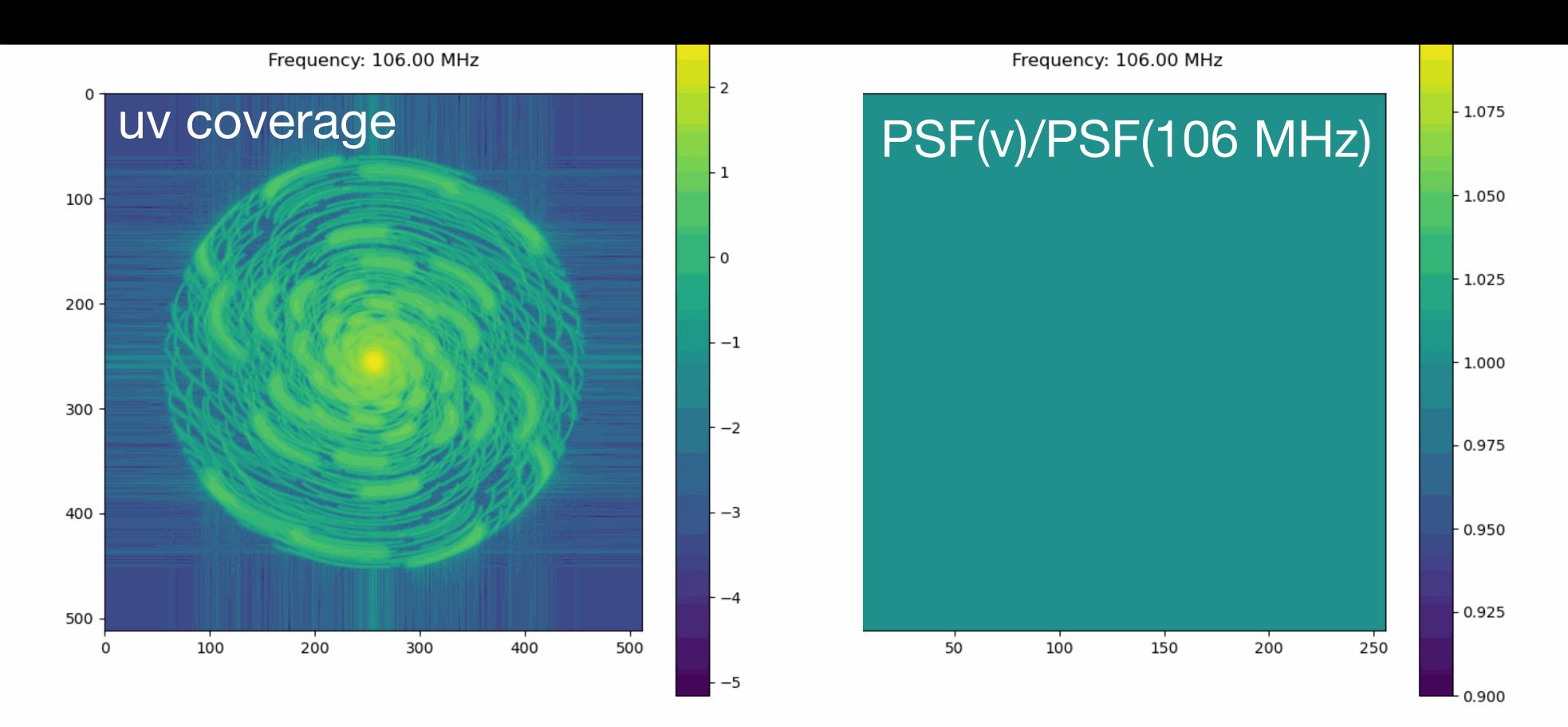


All FG cleaning algorithms are valid if no instrumental effects!

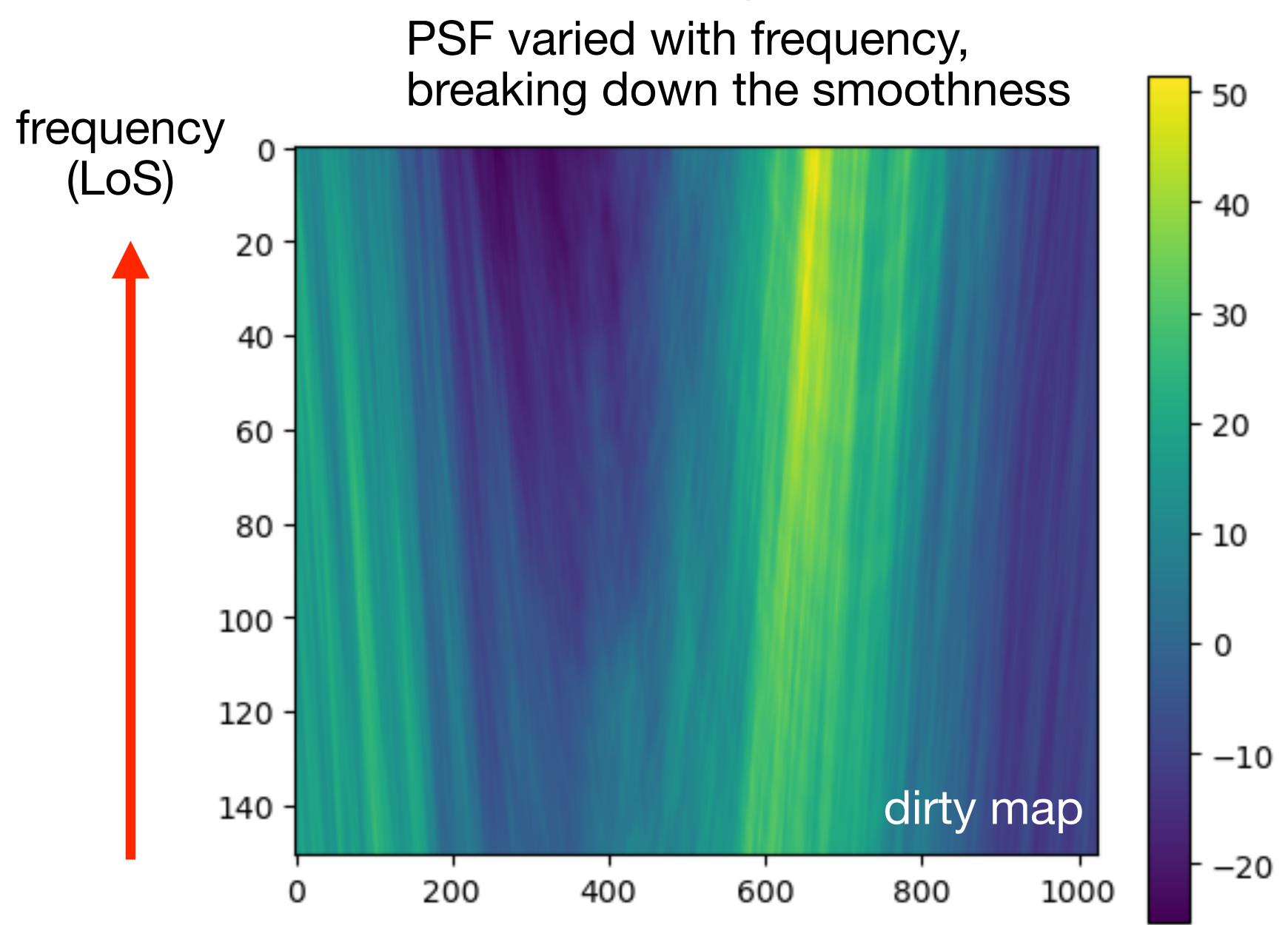
However...

Real-world Challenges:

- "Mode-mixing" breaks the smoothing and prevents foreground removal
- "Mode-mixing" producing non-smooth FG spectrum
- PSF deconvolution an ill-posed inverse problem; achieving the desired precision of 1 in 10,000 is not feasible



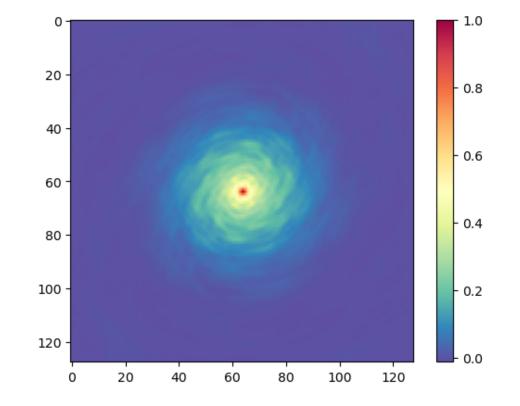
Real-world Challenge: Mode-mixing



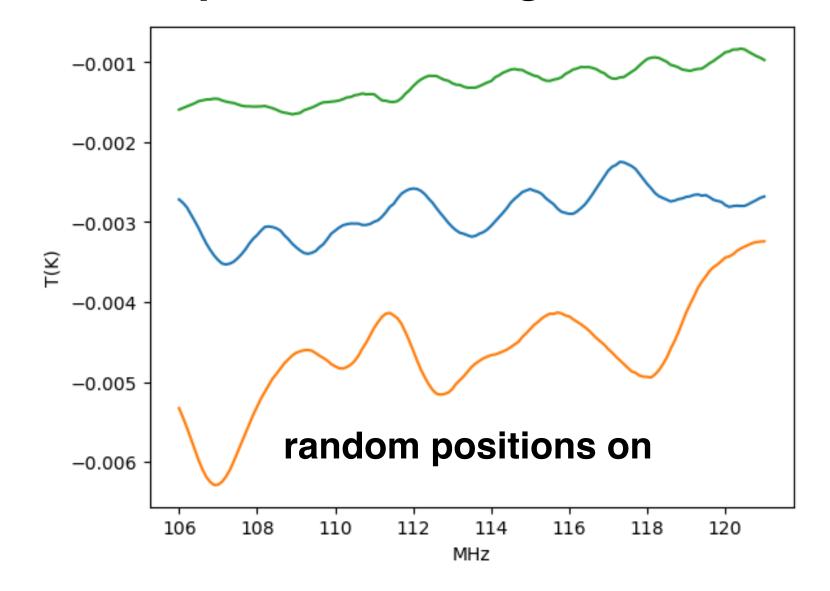
Key Challenge: frequency-dependent PSF

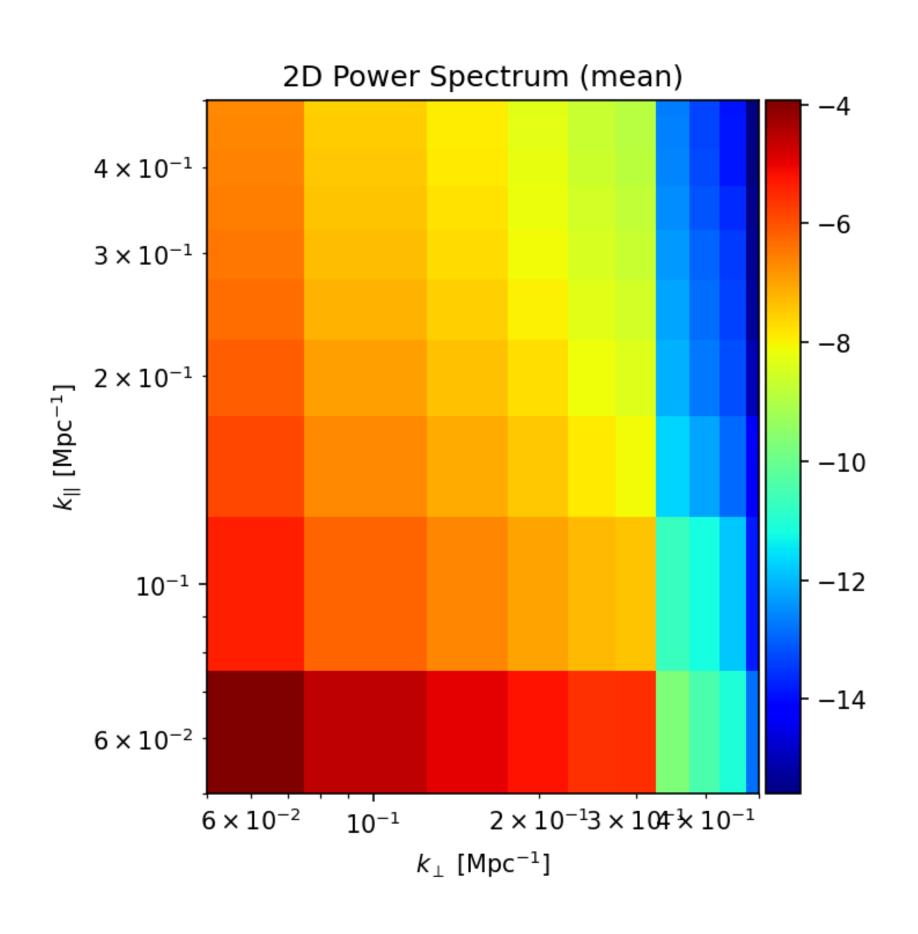
→ mode-mixing → producing non-smooth FG spectrum

 set up a point source on the sky without frequency dependence



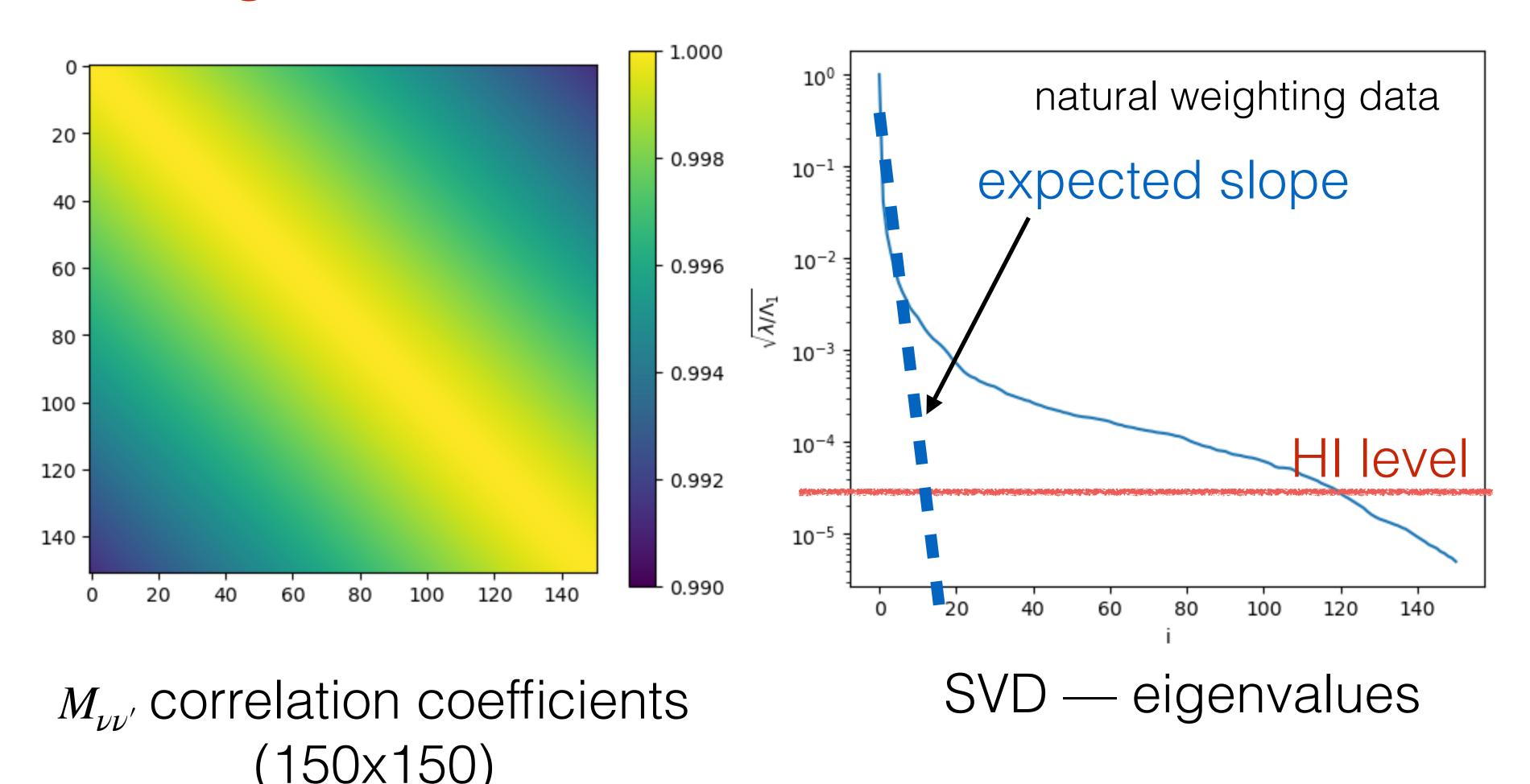
• following interferometric observation, the spectrum undergoes an oscillation





 mode mixing: spatial modes mixed up with frequency modes

Instrumental response (PSF) breaking down the smoothness:



Deduction of ~100 modes: impractical and physically meaningless

Mode mixing:

leakage of foreground power into cosmological modes due to instrument effects

→ contaminates high line-of-sight (k|) modes where the 21 cm signal lives

Why It Happens:

Interferometer chromaticity

Baseline length varies with frequency → beam changes with frequency

Smooth-spectrum sources appear non-smooth after imaging

Calibration & imaging imperfections

Bandpass errors, gridding, pixelization, wide-field distortions

Mode Mixing $k_{\perp} ightarrow k_{\parallel}$ from Frequency-Dependent PSF

1. Point Source Sky Model

We assume a flat-spectrum point source at angular position $I(\nu, \theta) = \delta \left(\theta - \theta_0 \right)$

2. Visibility from a Single Baseline b:

$$V(\nu) = \int d^2\theta I(\nu, \theta) e^{-2\pi i \mathbf{u}_{\nu} \cdot \theta} = e^{-2\pi i \mathbf{u}_{\nu} \cdot \theta_0}, \text{ with: } \mathbf{u}_{\nu} = \frac{\nu \mathbf{b}}{c}$$

3. Phase Evolution with Frequency

 $\cdot \nu_0$ central frequency

$$\bullet \nu = \nu_0 + \Delta \nu$$

$$V(\nu) = e^{-2\pi i \frac{(\nu_0 + \Delta \nu)}{c} \mathbf{b} \cdot \boldsymbol{\theta}_0} = e^{-2\pi i \left(\frac{\nu_0}{c} \mathbf{b} \cdot \boldsymbol{\theta}_0\right)} \cdot e^{-2\pi i \left(\frac{\Delta \nu}{c} \mathbf{b} \cdot \boldsymbol{\theta}_0\right)}$$

•The 1st term is a constant; the 2nd term is a frequency-dependent phase.

4. Fourier Transform Over Frequency

Take 1D Fourier transform over frequency, over a bandwidth B

$$\tilde{V}(k_{\parallel}) = \int_{\nu_0 - B/2}^{\nu_0 + B/2} d\nu e^{-2\pi i \frac{(\nu - \nu_0)}{c} \mathbf{b} \cdot \boldsymbol{\theta}_0} e^{-2\pi i \nu k \parallel}$$

$$= e^{-2\pi i \nu_0 k \| \int_{-B/2}^{+B/2} d\Delta \nu e^{-2\pi i \left(\frac{\Delta \nu}{c} \mathbf{b} \cdot \boldsymbol{\theta}_0 + \Delta \nu k \|\right)}$$

$$= e^{-2\pi i \nu_0 k \| \cdot \left[\frac{+B/2}{c} d\Delta \nu e^{-2\pi i \Delta \nu \left(\frac{\mathbf{b} \cdot \boldsymbol{\theta}_0}{c} + k \| \right)} \right] \Rightarrow \tilde{V}\left(k_{\parallel}\right) \propto \operatorname{sinc}\left[\pi B \left(\frac{\mathbf{b} \cdot \boldsymbol{\theta}_0}{c} + k_{\parallel} \right) \right]$$

- Even with a spectrally flat source, PSF variation introduces frequency structure

Mode-mixing equation in real space:

Assume I(x) has no dependence on ν

$$I_d(\nu, \mathbf{x}) = \int d^2 \mathbf{x}' \operatorname{PSF}(\nu, \mathbf{x} - \mathbf{x}') I(\mathbf{x}')$$

perform a Fourier transform along ν

$$\tilde{I}_{d}(x,\tau) = \int d\nu I_{d}(x,\nu)e^{-2\pi i\nu\tau} = \int d\nu \left[\int dx' \operatorname{PSF}(\nu, x - x') \cdot I(x') \right] e^{-2\pi i\nu\tau}$$

Swap the order of integration:

$$\tilde{I}_{d}(x,\tau) = \int dx' I(x') \cdot \left[\int d\nu \operatorname{PSF}(\nu, x - x') \cdot e^{-2\pi i \nu \tau} \right]$$

Mode-mixing equation in real space:

Define the delay-transformed PSF:

$$\widetilde{\mathrm{PSF}}(\tau, x) = \int d\nu \, \mathrm{PSF}(\nu, x) \cdot e^{-2\pi i \nu \tau}$$

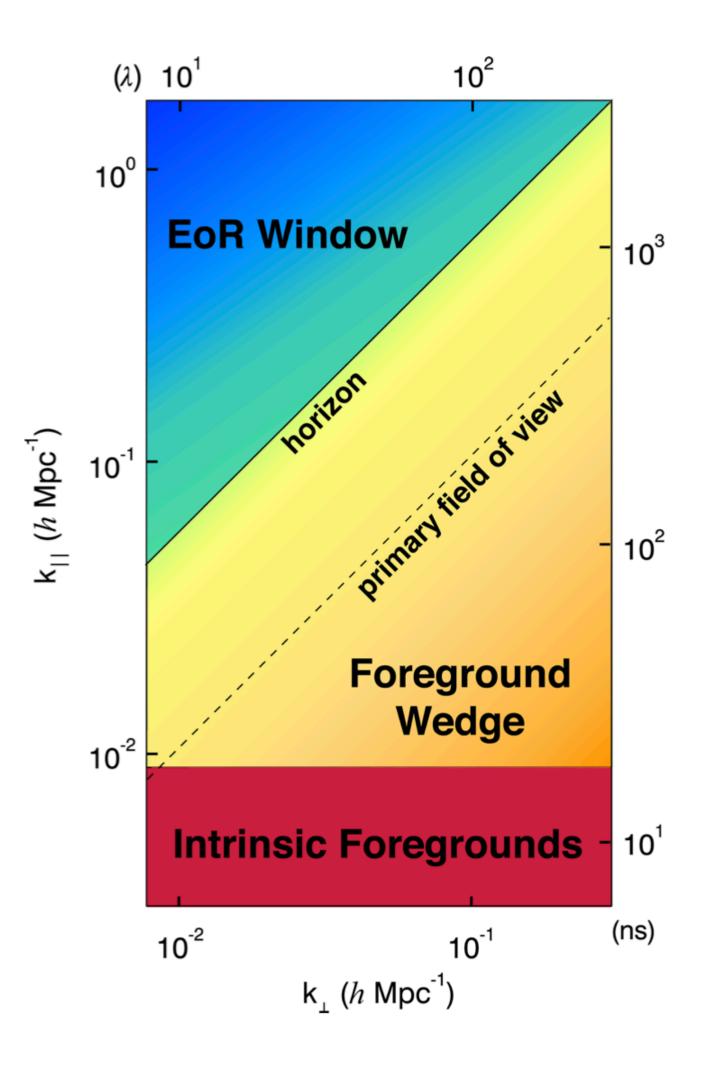
Then
$$\tilde{I}_d(x,\tau) = \int dx' \widetilde{\mathrm{PSF}} (\tau, x - x') \cdot I(x')$$

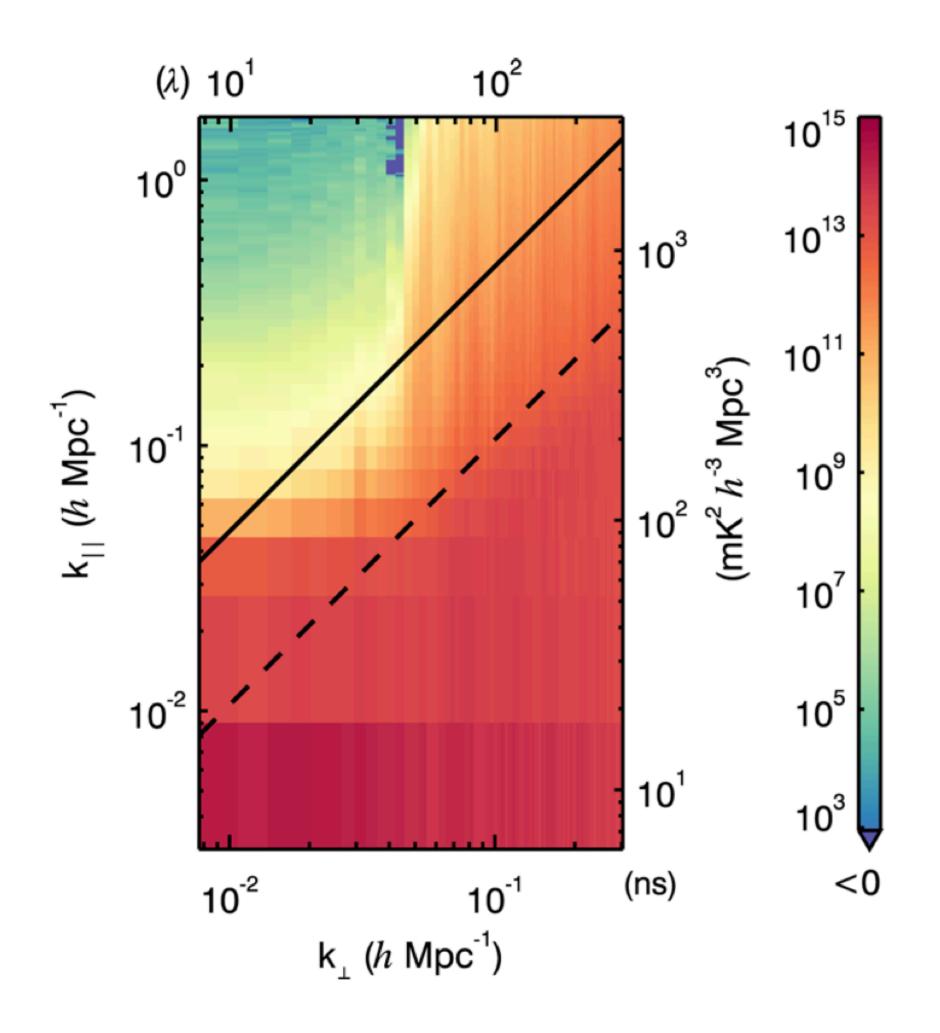
Then $\tilde{I}_d(x,\tau) = \int dx' \widetilde{\mathrm{PSF}} \; (\tau,x-x') \cdot I(x')$ the delay-transformed dirty image is a convolution of the sky with a delay-transformed PSF.

EOR window

Use the mapping from observing parameters to comoving k:

$$k_{\parallel} = rac{2\pi}{r_{
u}}\eta$$
 ; $k_{\perp} = rac{2\pi}{D(z)}|\mathbf{u}|$





Summary

21 cm Cosmology

- -Map the Cosmic Dawn & Reionization
- -Trace neutral hydrogen over time
- -Constrain dark matter, inflation, and structure formation

Foreground Challenges

-Foregrounds » Signal:

- Thanks!
- -Spectrally smooth, but mode mixing leaks into signal modes
- -Creates the EoR Wedge/Window

Foreground removal

-Avoidance, subtraction, and precise calibration

Questions:

1. How would adding components like free-free emission or spectral curvature challenge the assumptions made by PCA, ICA, or polynomial fitting?

2. If you simulate a data cube with point sources, synchrotron, and free-free emission, how would you evaluate which foreground removal method (PCA, ICA, GPR, KL) performs best?

3. How can you design a test to quantify signal loss or foreground leakage when applying these methods to complex foreground models?