Entropy constraints on effective field theory

Qing-Hong Cao

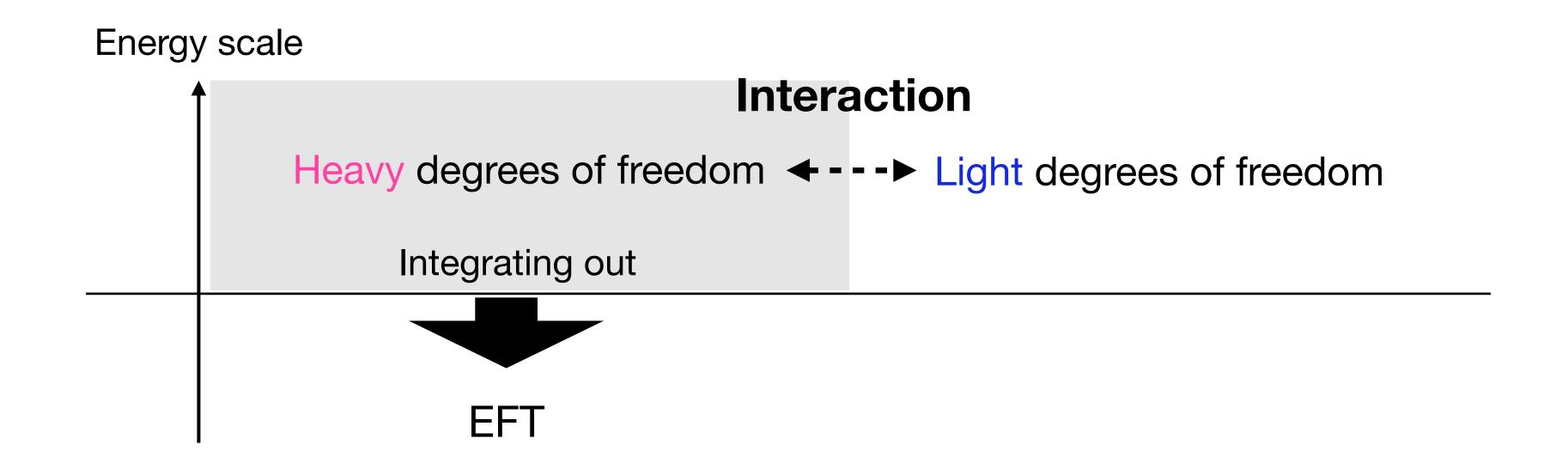
Peking University

Based on the talk given by Daiki Ueda at HPNP 2023

In collaboration with Daiki Ueda and Naoto Kan Phys.Rev.D 108 (2023) 2, 025011; JHEP 07 (2023) 111

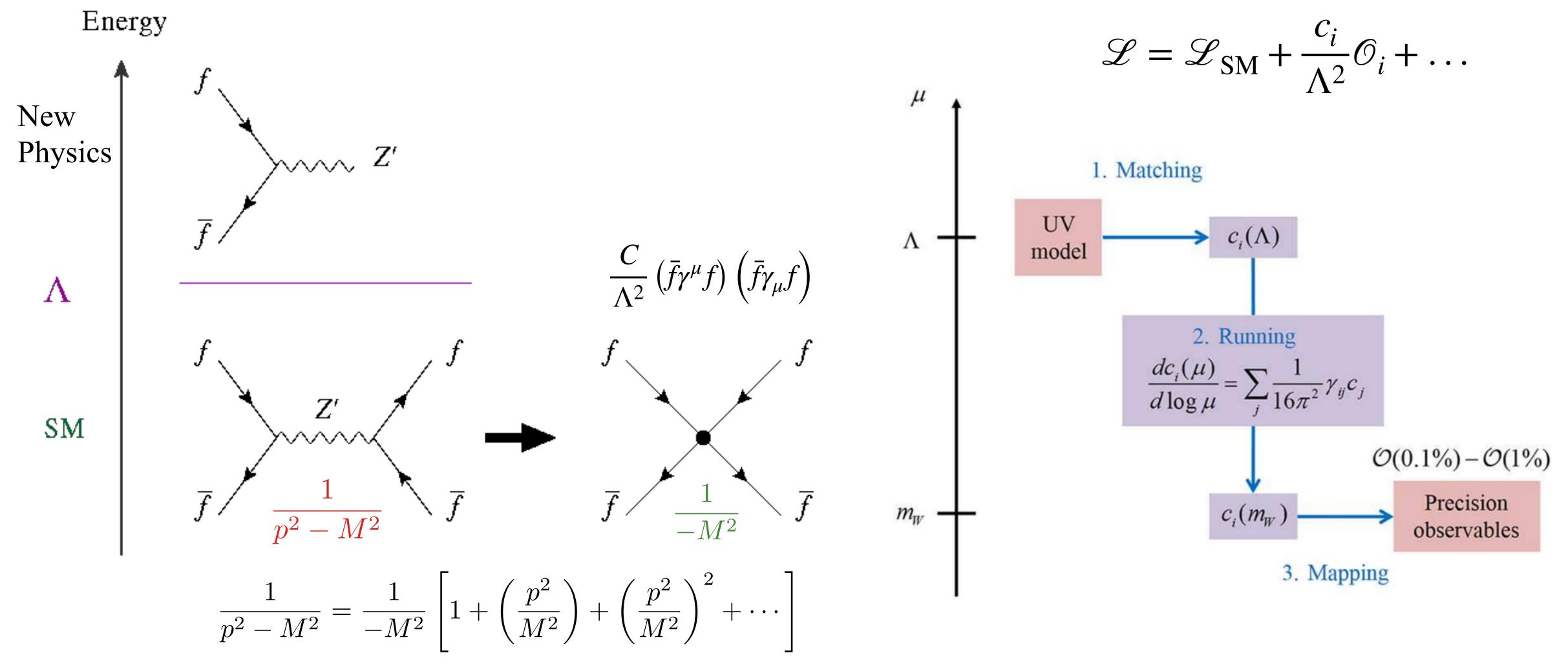
Introduction

- Effective Field Theory (EFT):
 - EFT is generated by integrating out dynamical degrees of freedom

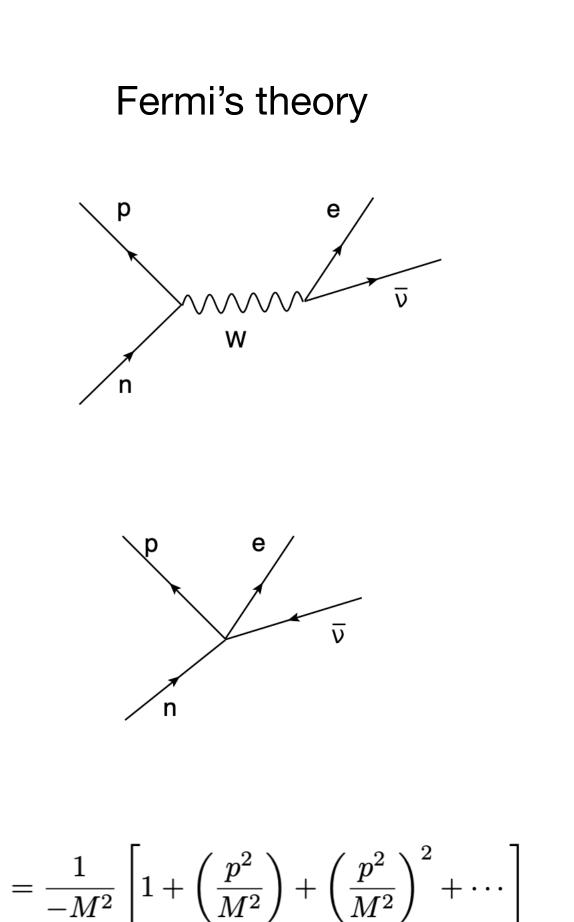


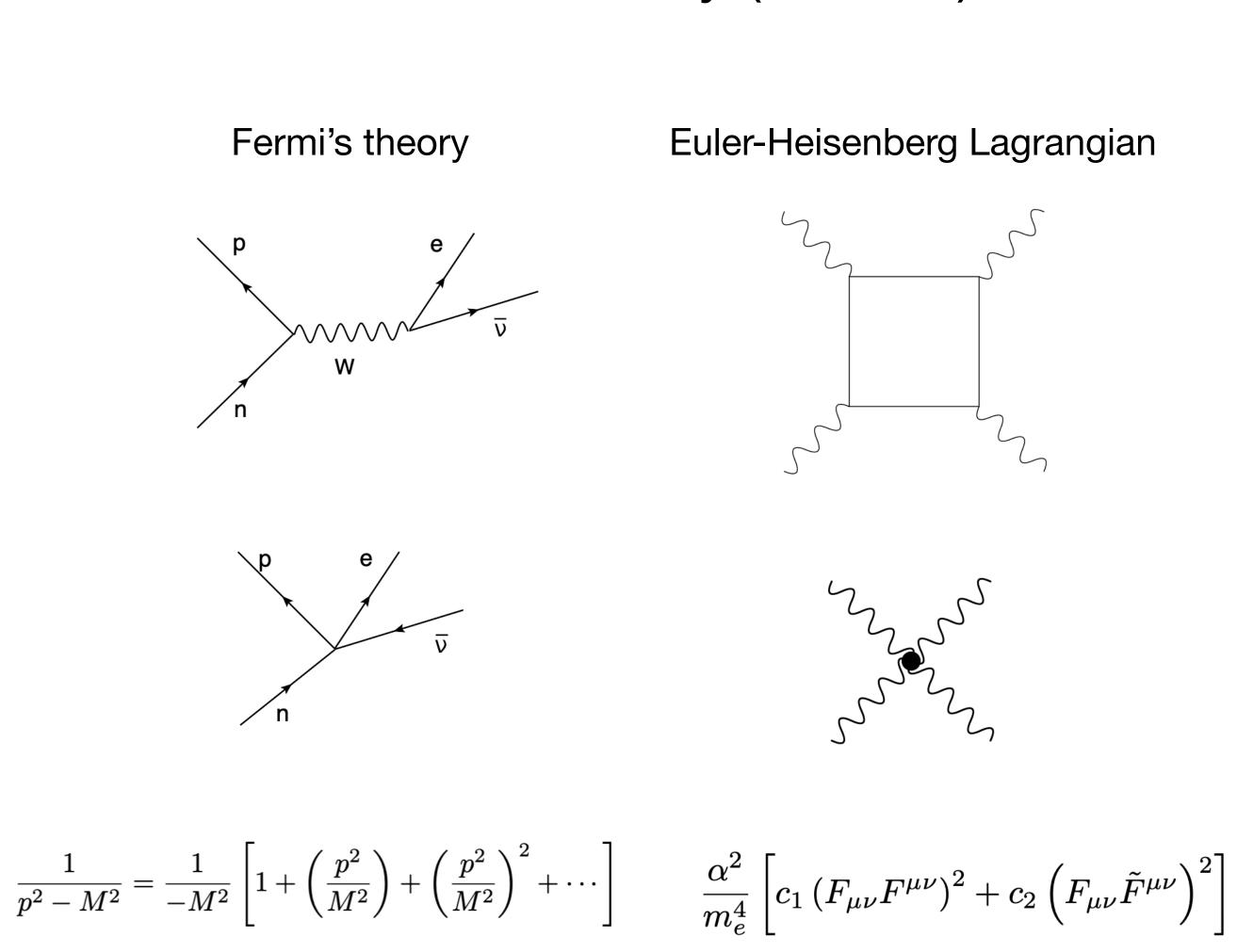
In the case of no new resonances seen at the LHC, the Standard Model Effective Field Theory (SMEFT) is a suitable tool to describe NP.

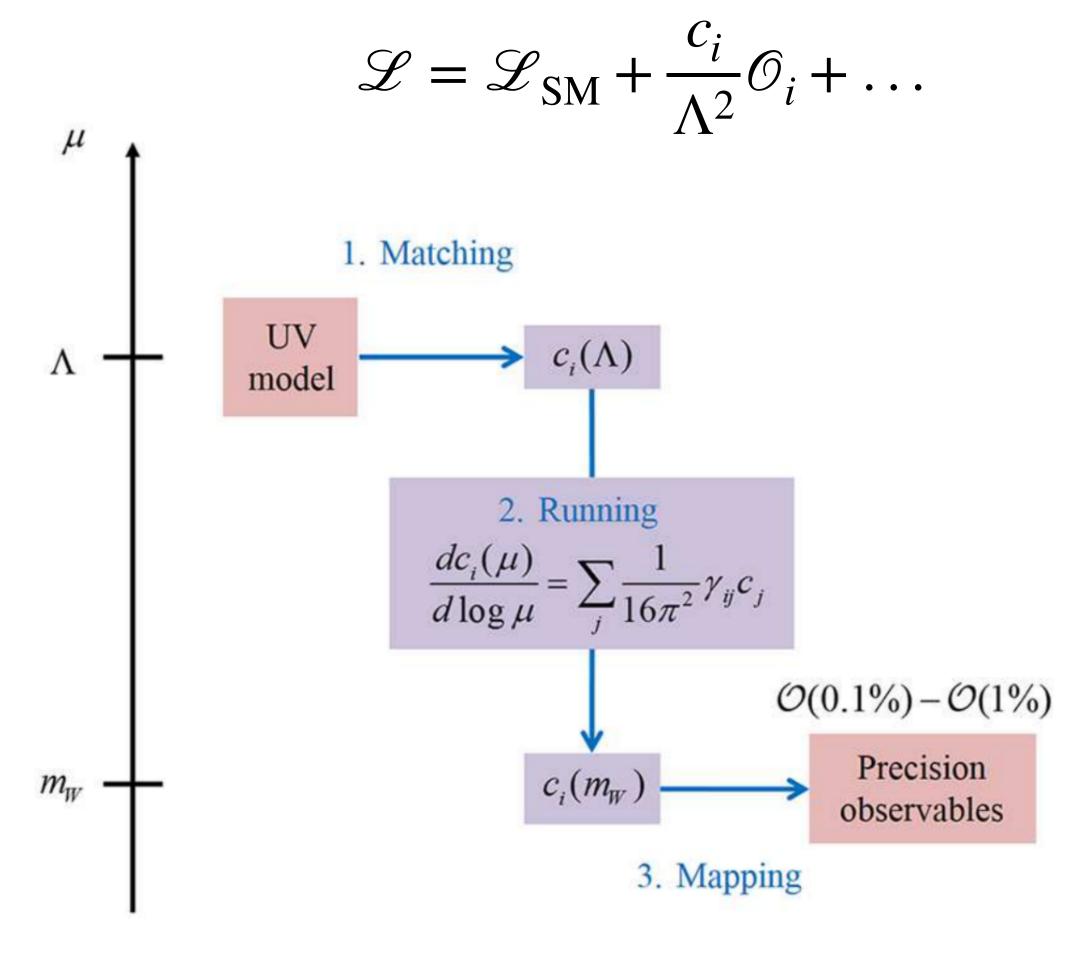
In the case of no new resonances seen at the LHC, the Standard Model Effective Field Theory (SMEFT) is a suitable tool to describe NP.



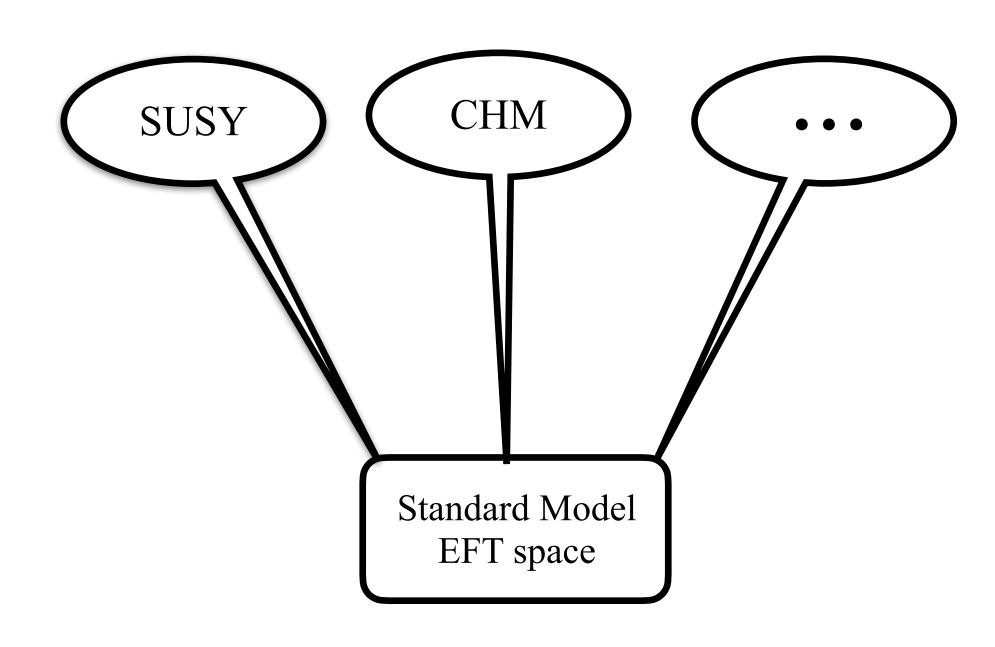
In the case of no new resonances seen at the LHC, the Standard Model Effective Field Theory (SMEFT) is a suitable tool to describe NP.





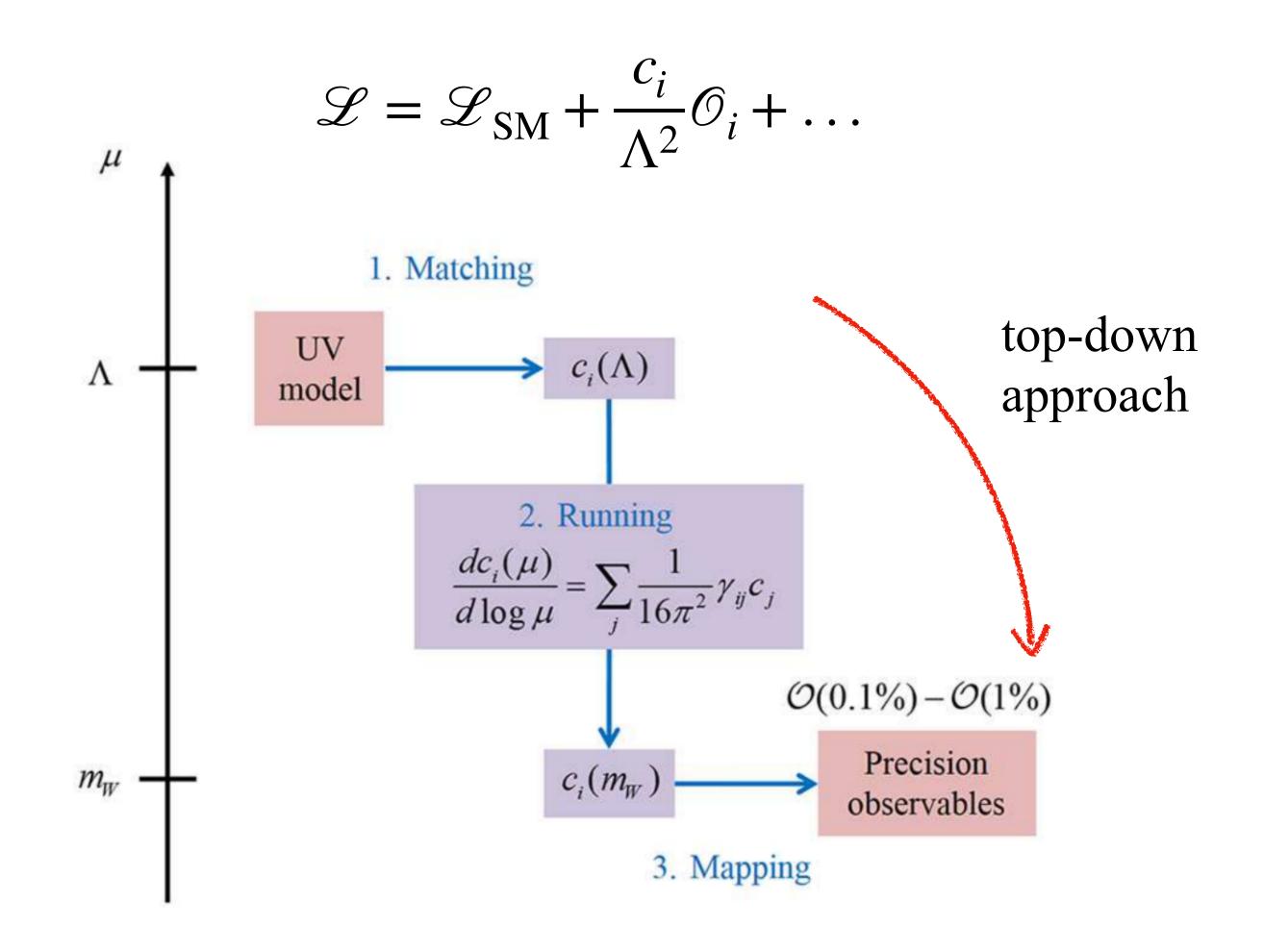


d.o.f. symmetries scale



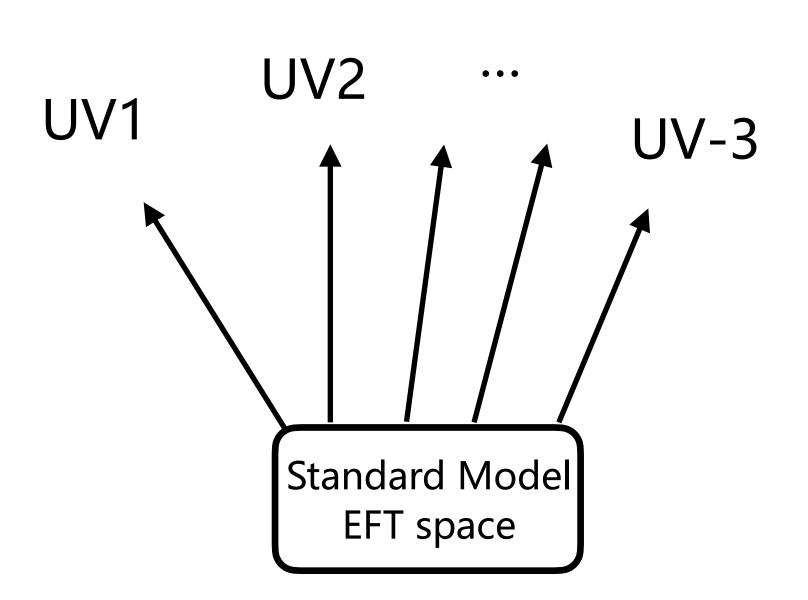
describes (infinitely) NP models by finite Wilson coefficients

determined by global fit to LHC data

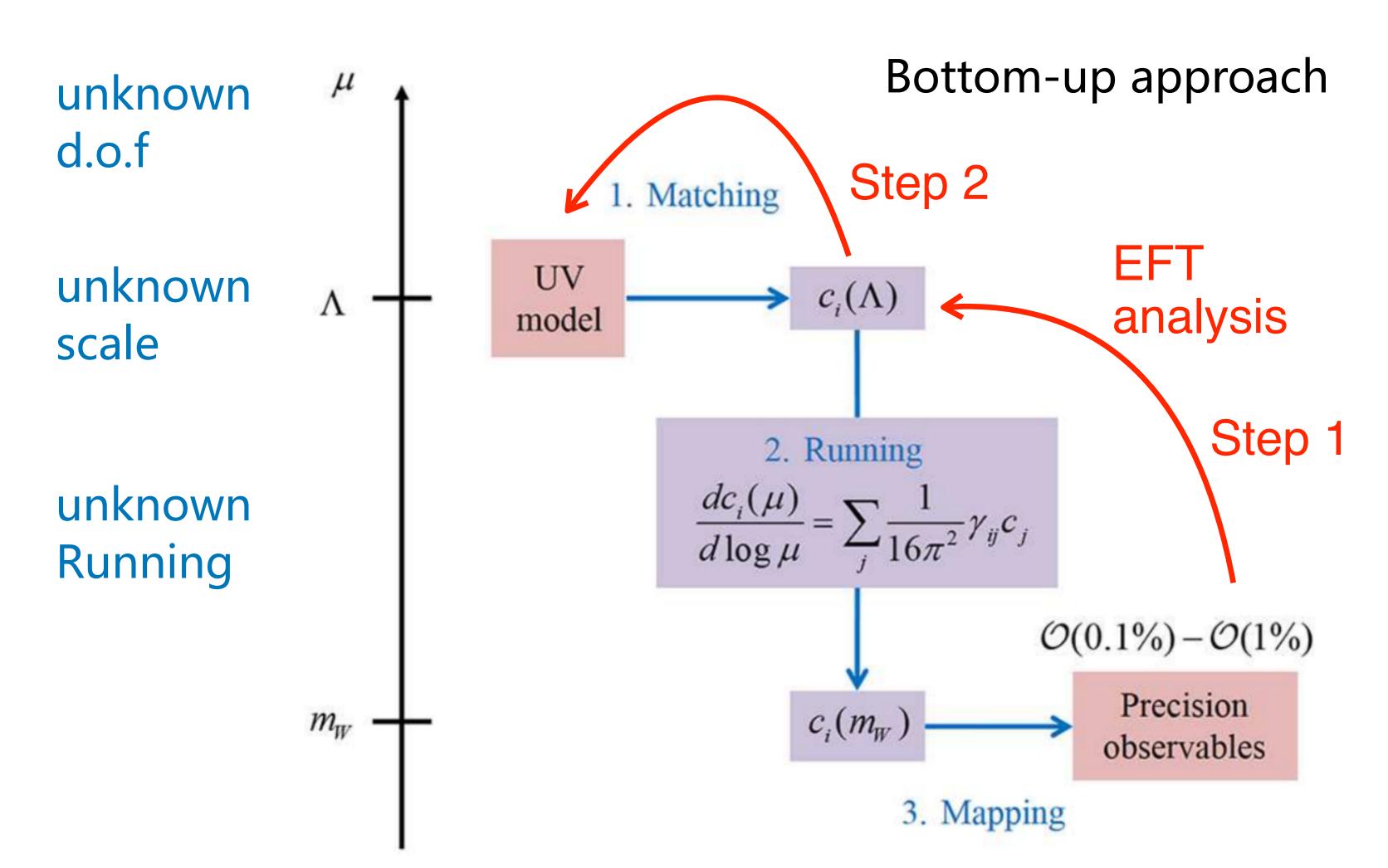


Henning, Lu, Murayama, 1412.1837

infinite NP models



$$\mathscr{L} = \mathscr{L}_{\text{SM}} + \frac{c_i}{\Lambda^2} \mathcal{O}_i + \dots$$



LHC inverse problem:

Once coefficients are known from LHC, how and to what extent can we determine the models?

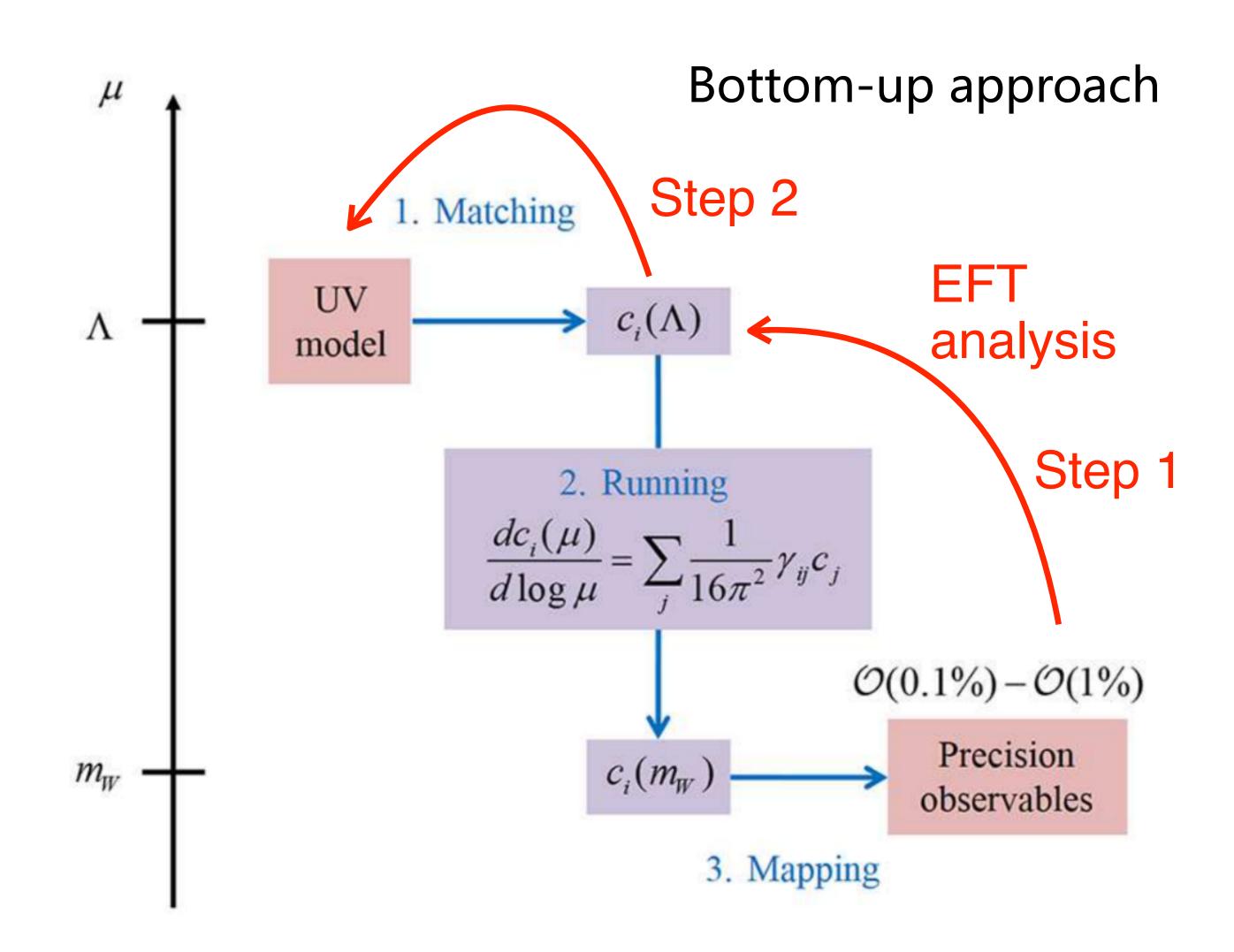
Assumptions:

one and only one NP scale

SM running effects

Independent $\begin{cases} \dim -5 & \frac{(LH)^2}{\Lambda} \\ \dim -6 & 59 \\ \dim -7 & 948 + 594 \\ \vdots \end{cases}$

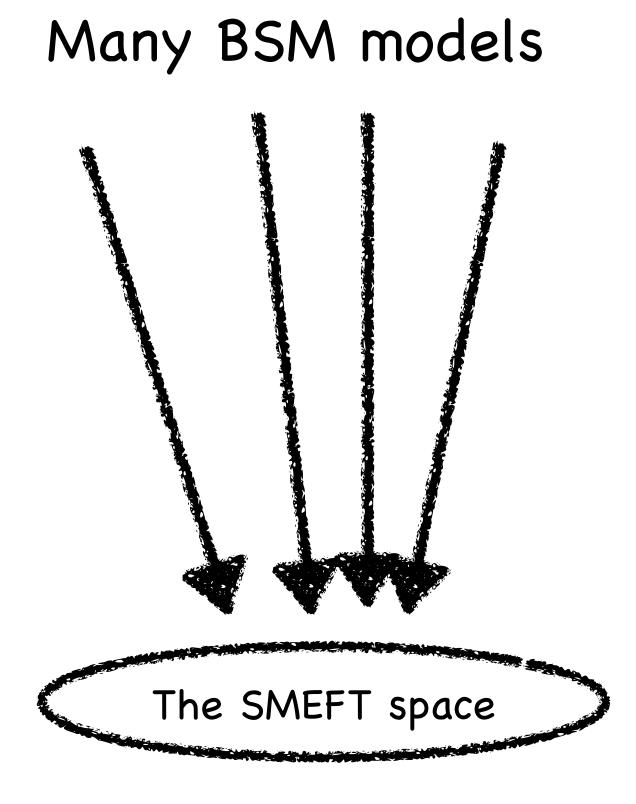
L. Lehman 1410.4193; Y. Liao .et al. 1607.07309; H.L.Li et al. 2005.00008 B. Henning etc. 1512.03433, H.L. Li et al, 2012.09188;; 2201.04639;



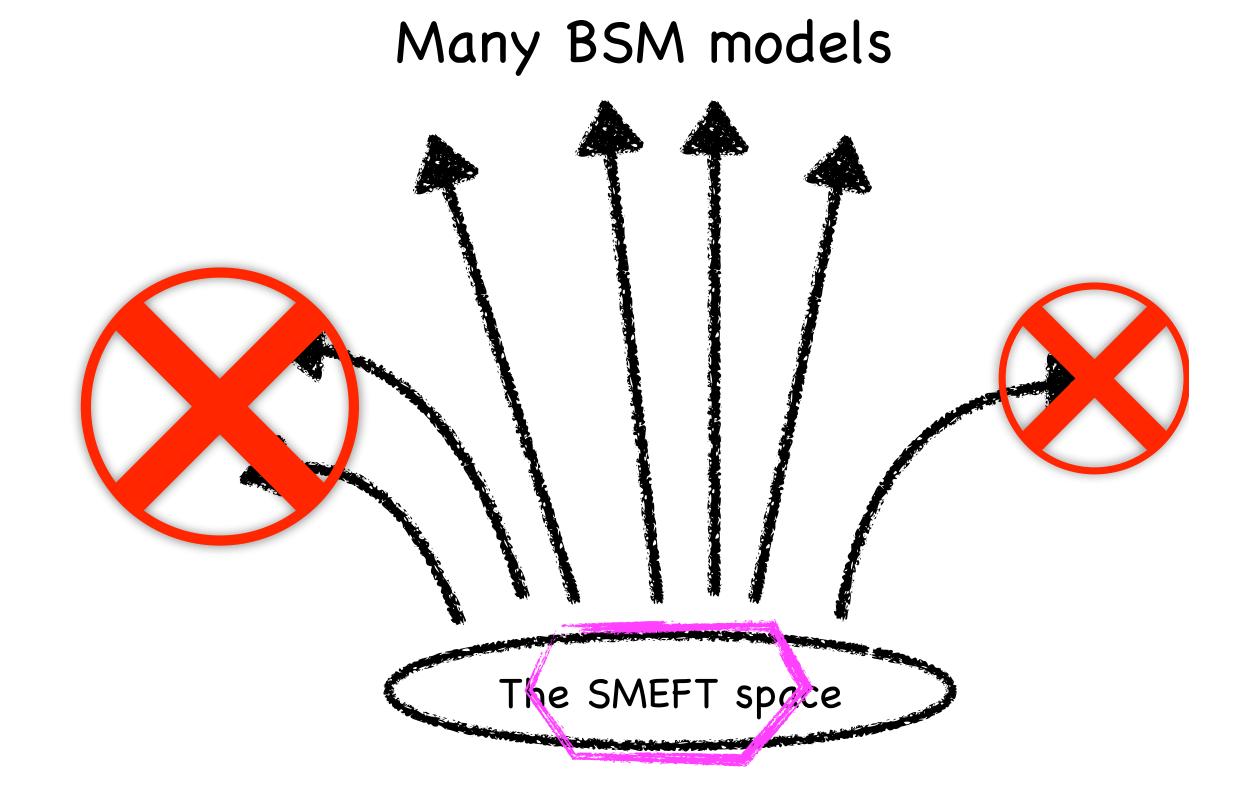
Henning, Lu, Murayama, 1412.1837

• •

LHC inverse problem: Positivity bounds in SMEFT



- SMEFT is useful because it describes (infinitely) many models by finitely many Wilson coefficients.
- They are being determined by global fit to LHC data.



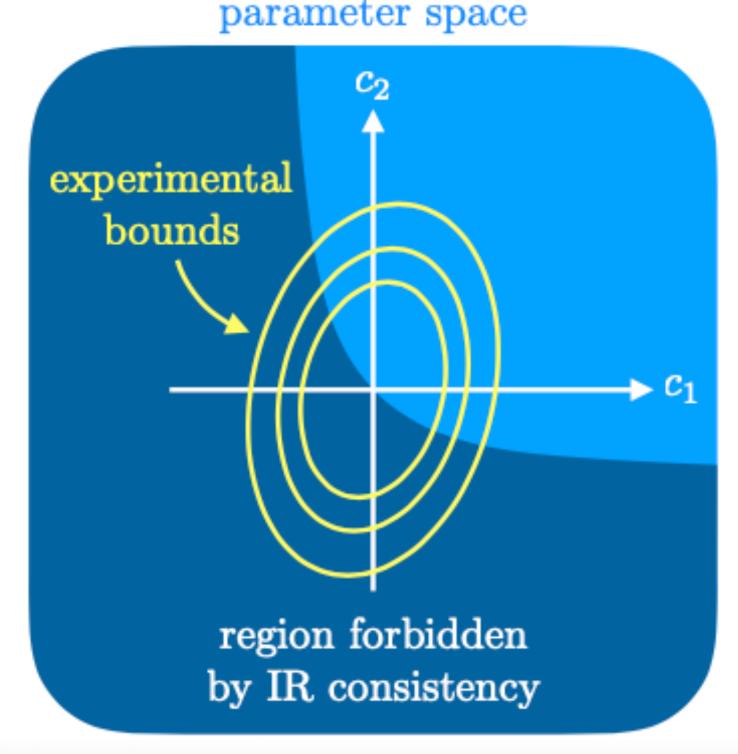
- The inverse problem: once coefficients are known from low energy EXPs, how, and to what extend, can we go up and determine the models?
 [Gu, Wang, 2008.07551] [S. Dawson et al. 2007.01296]
 [N. Arkani-Hamed et al. hep-ph/0512190]
- Positivity tells us when this is impossible, and much more.

Positivity bounds on dim-8 operators in SMEFT

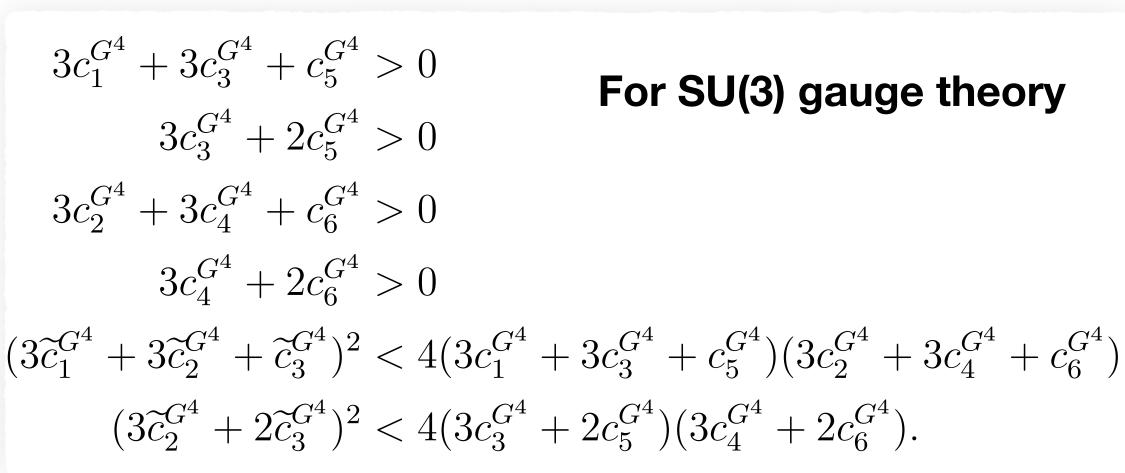
Cheung, Remmen, 1601.04068 Remmen, Rodd, 1908.09845

Dim-8 operators in SU(N) gauge theory

$$\mathcal{O}_{1}^{F^{4}} \qquad (F^{a}F^{a})(F^{b}F^{b}) \\
\mathcal{O}_{2}^{F^{4}} \qquad (F^{a}\widetilde{F}^{a})(F^{b}\widetilde{F}^{b}) \\
\mathcal{O}_{3}^{F^{4}} \qquad (F^{a}F^{b})(F^{a}F^{b}) \\
\mathcal{O}_{4}^{F^{4}} \qquad (F^{a}\widetilde{F}^{b})(F^{a}\widetilde{F}^{b}) \\
\mathcal{O}_{5}^{F^{4}} \qquad (F^{a}\widetilde{F}^{b})(F^{a}\widetilde{F}^{b}) \\
\mathcal{O}_{5}^{F^{4}} \qquad d^{abe}d^{cde}(F^{a}F^{b})(F^{c}F^{d}) \\
\mathcal{O}_{6}^{F^{4}} \qquad d^{ace}d^{bde}(F^{a}\widetilde{F}^{b})(F^{c}\widetilde{F}^{d}) \\
\mathcal{O}_{7}^{F^{4}} \qquad d^{ace}d^{bde}(F^{a}\widetilde{F}^{b})(F^{c}\widetilde{F}^{d}) \\
\mathcal{O}_{8}^{F^{4}} \qquad d^{ace}d^{bde}(F^{a}\widetilde{F}^{b})(F^{c}\widetilde{F}^{d}) \\
\mathcal{O}_{5}^{F^{4}} \qquad (F^{a}F^{a})(F^{b}\widetilde{F}^{b}) \\
\mathcal{O}_{5}^{F^{4}} \qquad (F^{a}F^{b})(F^{a}\widetilde{F}^{b}) \\
\mathcal{O}_{5}^{F^{4}} \qquad d^{abe}d^{cde}(F^{a}F^{b})(F^{c}\widetilde{F}^{d}) \\
\mathcal{O}_{5}^{F^{4}} \qquad d^{abe}d^{cde}(F^{a}F^{b})(F^{c}\widetilde{F}^{d}) \\
\mathcal{O}_{5}^{F^{4}} \qquad d^{abe}d^{cde}(F^{a}F^{b})(F^{c}\widetilde{F}^{d})
\end{aligned}$$

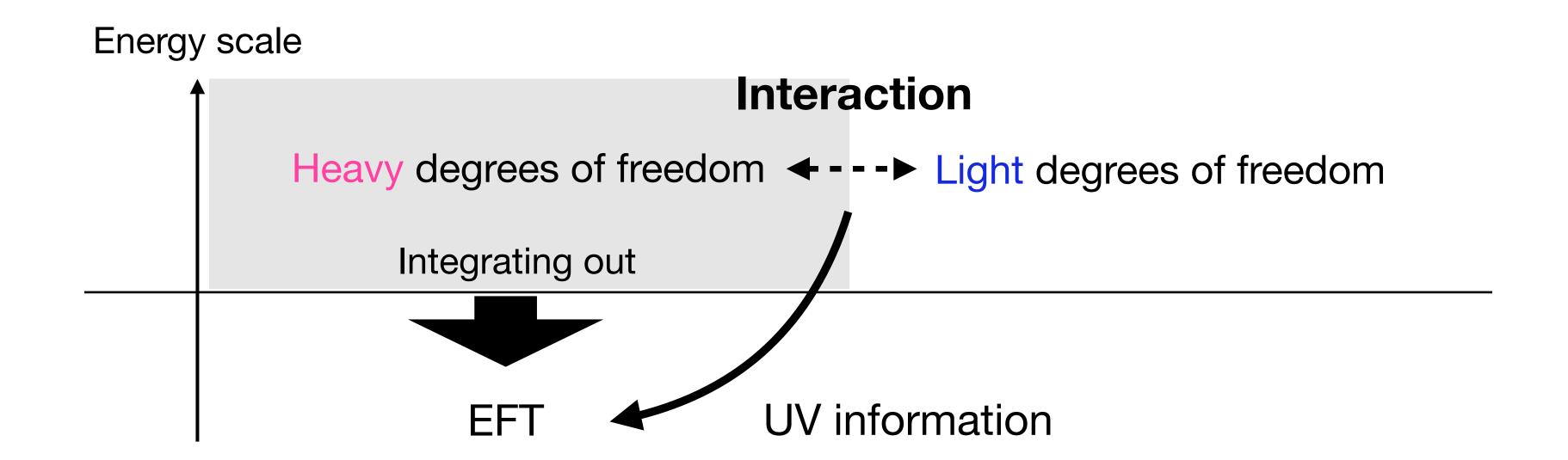


Analyticity Unitarity Locality



An alternative perspective

- Effective Field Theory (EFT):
 - EFT is generated by integrating out dynamical degrees of freedom
 - Information on UV theory is transferred through interaction b/w heavy and light degrees of freedom



Differences between theories with and without interaction characterize UV information

⇒ Relative entropy characterizes their difference

Relative entropy

*
$$Tr[\rho_A] = Tr[\rho_B] = 1$$
, $\rho_A = \rho_A^{\dagger}$, $\rho_B = \rho_B^{\dagger}$

• Definition of relative entropy b/w two probability distribution functions ho_A and ho_B

$$S(\rho_A \mid \rho_B) \equiv \text{Tr} \left[\rho_A \ln \rho_A - \rho_A \ln \rho_B \right]$$

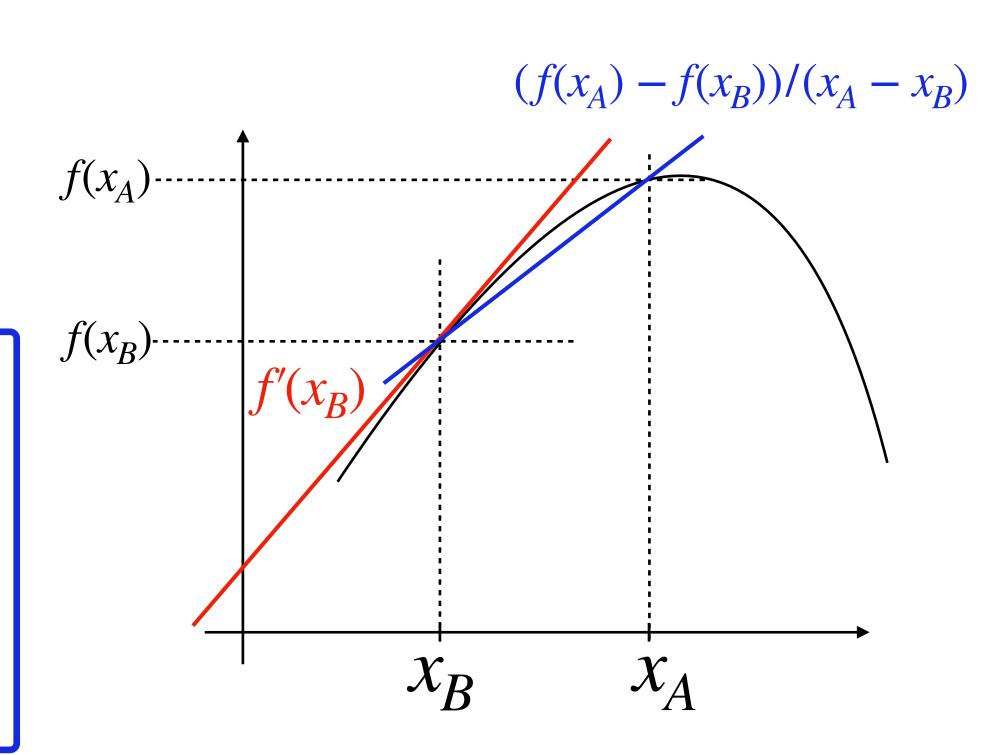
- relative entropy is non-negative

A proof:

$$f(x)$$
: a convex function $\Rightarrow \text{Tr}[f(\rho_A) - f(\rho_B) - (\rho_A - \rho_B)f'(\rho_B)] \le 0$

 $f(x) \rightarrow -x \ln x$ (convex function)

$$S(\rho_A \mid \mid \rho_B) \ge 0$$



* equality holds if and only if $\rho_A = \rho_B$ Property of convex function: $f(x_A) - f(x_B) \le (x_A - x_B) \cdot f'(x_B)$

Relative entropy characterizes difference between two probability distributions

Relative entropy and our idea

• Definition of relative entropy b/w two probability distribution functions ho_A and ho_B

$$S(\rho_A \mid \mid \rho_B) \equiv \text{Tr} \left[\rho_A \ln \rho_A - \rho_A \ln \rho_B \right] \ge 0$$

- relative entropy is non-negative $\;\; *$ equality holds if and only if $\rho_A = \rho_B$
- Relative entropy provides quantitative difference between two things defined by probability distribution functions

Ex.
$$P_A \qquad P_B \qquad S(\P | | \P) > 0 \qquad S(\P | | \P) = 0$$

What about relative entropy b/w theories with and without interaction?

⇒ We have to define probability distribution for each theory.

Probability distributions of theories

ullet We define probability distributions of theory described by Euclidean action I as follows:

Probability distribution function:
$$P[\phi, \Phi] = e^{-I[\phi, \Phi]}/Z$$

Partition function:
$$Z = \int d[\phi] d[\Phi] e^{-I[\phi,\Phi]}$$

where I: Euclidean action, ϕ : light fields, Φ : heavy fields

Probability distributions of theories

ullet We define probability distributions of theory described by Euclidean action I as follows:

Probability distribution function: $P[\phi, \Phi] = e^{-I[\phi, \Phi]}/Z$

Partition function:
$$Z = \int d[\phi] d[\Phi] e^{-I[\phi,\Phi]}$$

where I: Euclidean action, ϕ : light fields, Φ : heavy fields

Relative entropy between two theories

$$S(P_A \mid \mid P_B) \equiv \int d[\phi] d[\Phi] (P_A \ln P_A - P_A \ln P_B) \ge 0$$

where
$$P_A = e^{-l_A}/Z_A$$
, $P_B = e^{-l_B}/Z_B$

Definition of two theories

No interaction b/w ϕ and Φ

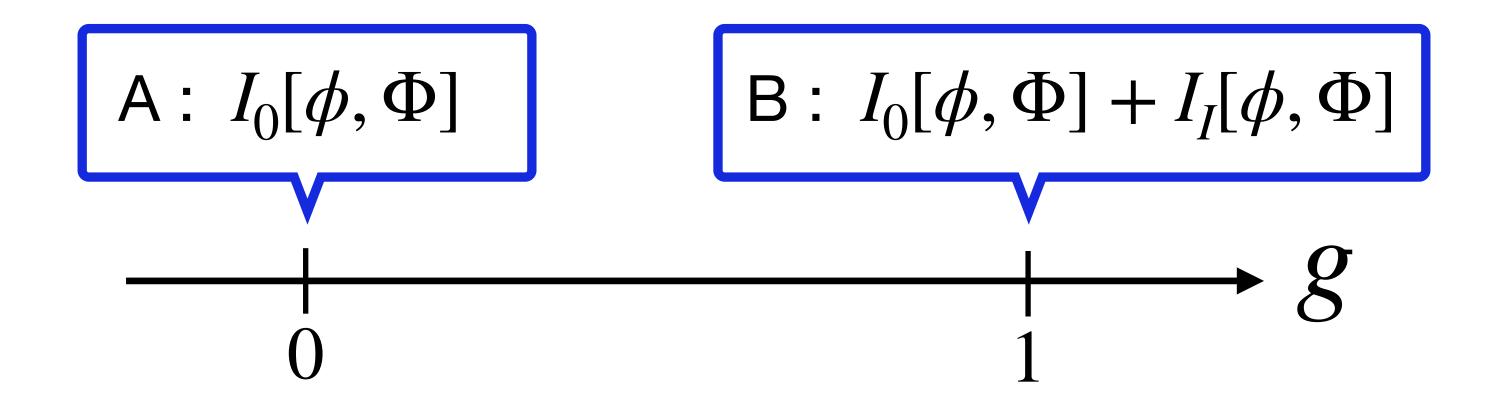
Interaction b/w ϕ and Φ

We consider theories described by

$$I_0[\phi, \Phi] + I_I[\phi, \Phi]$$

 $*\Phi$: heavy fields, ϕ : light fields

• We define $I_0[\phi, \Phi] + g \cdot I_I[\phi, \Phi]$ by introducing parameter g



We consider relative entropy $S(P_A \mid \mid P_B)$

 $*(\Phi, \phi)$ of A is the same as that of B

$$S(P_A | | P_B) = \int d[\phi] d[\Phi] [P_A \ln P_A - P_A \ln P_B] \left\{ P_A = e^{-I_0[\phi, \Phi]} / Z_0 \quad P_B = e^{-(I_0[\phi, \Phi] + gI_I[\phi, \Phi])} / Z_g \right\}$$

$$S(P_A | | P_B) = \int d[\phi] d[\Phi] [P_A \ln P_A - P_A \ln P_B] \left\{ P_A = e^{-I_0[\phi, \Phi]} / Z_0 \quad P_B = e^{-(I_0[\phi, \Phi] + gI_I[\phi, \Phi])} / Z_g \right\}$$

$$= W_0 - W_g + g\left(\frac{\partial W_g}{\partial g}\right) \ge 0 \quad \text{Effective actions:} \quad W_g = -\ln Z_g, \quad W_0 = -\ln Z_0$$

$$S(P_A | | P_B) = \int d[\phi] d[\Phi] \left[P_A \ln P_A - P_A \ln P_B \right] \left\{ P_A = e^{-I_0[\phi, \Phi]} / Z_0 \quad P_B = e^{-(I_0[\phi, \Phi] + gI_I[\phi, \Phi])} / Z_g \right\}$$

$$= W_0 - W_g + g \left(\frac{\partial W_g}{\partial g}\right)_{g=0} \ge 0$$
 Effective actions: $W_g = -\ln Z_g$, $W_0 = -\ln Z_0$

 $S(P_A \mid P_B)$ yields constraints on the Euclidean effective actions

$$S(P_A \mid \mid P_B) = \int d[\phi] d[\Phi] \left[P_A \ln P_A - P_A \ln P_B \right] \left\{ \begin{array}{l} P_A = e^{-I_0[\phi,\Phi]}/Z_0 & P_B = e^{-(I_0[\phi,\Phi]+gI_I[\phi,\Phi])}/Z_g \\ \\ = W_0 - W_g + g \left(\frac{\partial W_g}{\partial g} \right)_{g=0} \geq 0 \end{array} \right\} \left\{ \begin{array}{l} \text{Effective actions: } W_g = -\ln Z_g, & W_0 = -\ln Z_0 \\ \end{array} \right.$$

 $S(P_A \mid \mid P_B)$ yields constraints on the Euclidean effective actions even in quantum mechanical system

$$S(P_A || P_B) \to \operatorname{tr} \left[P_A \ln P_A - P_A \ln P_B \right] \blacktriangleleft P_A \to e^{-H_0/Z_0} \qquad P_B \to e^{-(H_0 + gH_I)/Z_g}$$

$$= W_0 - W_g + g \left(\frac{\partial W_g}{\partial g} \right)_{g=0} \ge 0 \qquad \blacktriangleleft W_g = -\ln Z_g, \ W_0 = -\ln Z_0$$

Theory	Action	Probability	Partition function
A	$I_0[x, X] = M^2 X^2 + m^2 x^2$	$P_0 = e^{-I_0[x,X]}/Z_0[x]$	$Z_0[x] = \int_{-\infty}^{\infty} dX e^{-I_0[x,X]} = e^{-m^2 x^2} \sqrt{\frac{\pi}{m}}$
В	$I_g[x, X] = I_0[x, X] + g \cdot x \cdot X$	$P_g = e^{-I_g[x,X]}/Z_g[x]$	$Z_g[x] = \int_{-\infty}^{\infty} dX e^{-I_g[x,X]} = Z_0[x] \cdot e^{g^2 x^2 / 4M^2}$

*X: heavy degrees of freedom, x: BG like degrees of freedom

$$S(P_0 | | P_g) = W_0 - W_g + g \left(\frac{\partial W_g}{\partial g}\right)_{g=0}$$

Theory	Action	Probability	Partition function
A	$I_0[x, X] = M^2 X^2 + m^2 x^2$	$P_0 = e^{-I_0[x,X]}/Z_0[x]$	$Z_0[x] = \int_{-\infty}^{\infty} dX e^{-I_0[x,X]} = e^{-m^2 x^2} \sqrt{\frac{\pi}{m}}$
В	$I_g[x, X] = I_0[x, X] + g \cdot x \cdot X$	$P_g = e^{-L[x,X]}/Z_g[x]$	$Z_g[x] = \int_{-\infty}^{\infty} dX e^{-I_g[x,X]} = Z_0[x] \cdot e^{g^2 x^2 / 4M^2}$

$$W_0 = -\ln Z_0$$

*X: heavy degrees of freedom, x: BG like degrees of freedom

$$S(P_0 | | P_g) = W_0 - W_g + g \left(\frac{\partial W_g}{\partial g}\right)_{g=0}$$

$$W_{\varrho} = -\ln Z_{\varrho}$$

Theory	Action	Probability	Partition function
A	$I_0[x, X] = M^2 X^2 + m^2 x^2$	$P_0 = e^{-I_0[x,X]}/Z_0[x]$	$Z_0[x] = \int_{-\infty}^{\infty} dX e^{-I_0[x,X]} = e^{-m^2 x^2} \sqrt{\frac{\pi}{m}}$
В	$I_g[x, X] = I_0[x, X] + g \cdot x \cdot X$	$P_g = e^{-L[x,X]}/Z_g[x]$	$Z_g[x] = \int_{-\infty}^{\infty} dX e^{-I_g[x,X]} = Z_0[x] \cdot e^{g^2 x^2 / 4M^2}$

$$W_0 = -\ln Z_0$$

*X: heavy degrees of freedom, x: BG like degrees of freedom

$$S(P_0 | | P_g) = W_0 - W_g = g^2 \cdot \frac{x^2}{4M^2} \ge 0$$

Theory	Action	Probability	Partition function
A	$I_0[x, X] = M^2 X^2 + m^2 x^2$	$P_0 = e^{-I_0[x,X]}/Z_0[x]$	$Z_0[x] = \int_{-\infty}^{\infty} dX e^{-I_0[x,X]} = e^{-m^2 x^2} \sqrt{\frac{\pi}{m}}$
В	$I_g[x, X] = I_0[x, X] + g \cdot x \cdot X$	$P_g = e^{-I_g[x,X]}/Z_g[x]$	$Z_g[x] = \int_{-\infty}^{\infty} dX e^{-I_g[x,X]} = Z_0[x] \cdot e^{g^2 x^2 / 4M^2}$

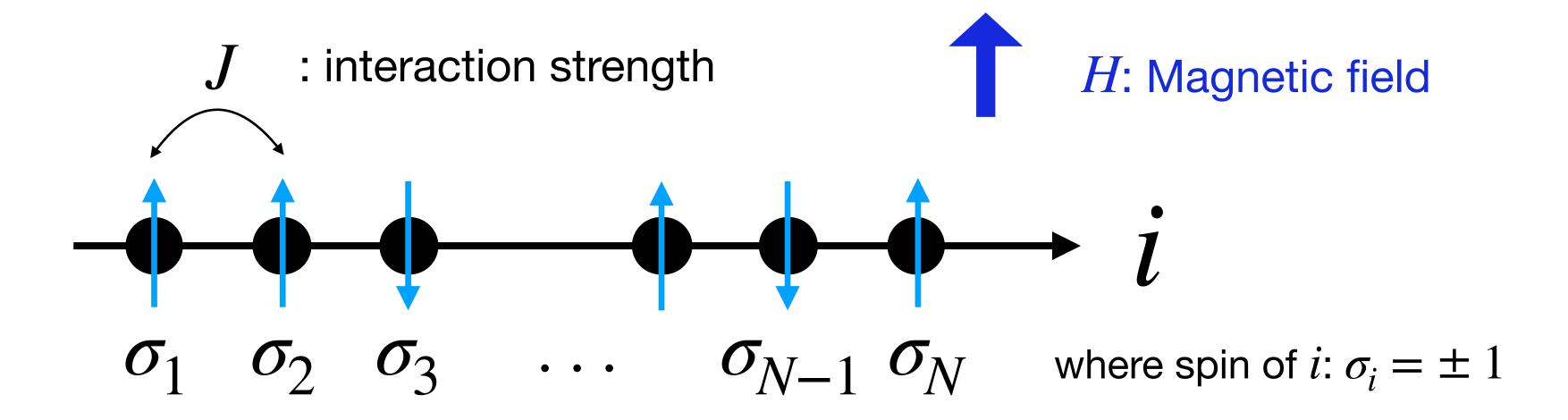
*X: heavy degrees of freedom, x: BG like degrees of freedom

Relative entropy:

$$S(P_0 | | P_g) = W_0 - W_g = g^2 \cdot \frac{x^2}{4M^2} \ge 0$$

Shift of effective action is negative because of non-negativity of relative entropy

Example 2: Ising model in one dimension



	Theory	Hamiltonian	Probability	Partition function
ma	A agnetic field = 0	$H_0 = -J \sum_{i=1}^{N} \sigma_i \sigma_{i+1}$	$\rho_0 = e^{-\beta \cdot H_0} / Z_0$	$Z_0 = \text{Tr}[e^{-\beta H_0}]$
ma	B agnetic field $\neq 0$	$H_g = -J\sum_{i=1}^{N} \sigma_i \sigma_{i+1} - gH\sum_{j=1}^{N} \sigma_j$	$\rho_g = e^{-\beta H_g}/Z_g$	$Z_g = \text{Tr}[e^{-\beta H_g}]$

 $*\sigma_i$: heavy degrees of freedom, H: light degrees of freedom

Example 2: Ising model in one dimension

Theory	Hamiltonian	Probability	Partition function
A magnetic field = 0	$H_0 = -J \sum_{i=1}^{N} \sigma_i \sigma_{i+1}$	$\rho_0 = e^{-\beta \cdot H_0} / Z_0$	$Z_0 = \text{Tr}[e^{-\beta H_0}]$
B magnetic field $\neq 0$	$H_g = -J\sum_{i=1}^{N} \sigma_i \sigma_{i+1} - gH\sum_{i=1}^{N} \sigma_i$	$\rho_g = e^{-\beta H_g}/Z_g$	$Z_g = \text{Tr}[e^{-\beta H_g}]$

* σ_i : dynamical degrees of freedom, H: BG field

Relative entropy:

$$S(\rho_0 \mid \mid \rho_g) = W_0 - W_g = N \cdot \ln \left[\frac{e^{-4\beta \cdot J} + \cosh(\beta \cdot g \cdot H) + \sqrt{(\sinh(\beta \cdot g \cdot H))^2}}{1 + e^{-4\beta \cdot J}} \right] \ge 0$$

Non-negativity of relative entropy explain why the free energy of the spin system decrease by external magnetic field

• Consider the SM Higgs H coupled to a real singlet field s

• Consider the SM Higgs H coupled to a real singlet field s

Theory	Action in Minkowski space	
A No interaction b/w H and s	$I_0 = \int d^4x \left[D_{\mu}H ^2 + \frac{1}{2} (\partial_{\mu}s)^2 - \left(\mu_0^2 H ^2 + \lambda_0 H ^4 + \frac{1}{2} M^2 s^2 + \frac{g_s \cdot A_1}{3} s^3 + \frac{\lambda_s}{4} s^4 \right) \right]$	

• Consider the SM Higgs H coupled to a real singlet field s

Theory	Action in Minkowski space	
A No interaction b/w H and s	$I_0 = \int d^4x \left[D_{\mu}H ^2 + \frac{1}{2} (\partial_{\mu}s)^2 - \left(\mu_0^2 H ^2 + \lambda_0 H ^4 + \frac{1}{2} M^2 s^2 + \frac{g_s \cdot A_1}{3} s^3 + \frac{\lambda_s}{4} s^4 \right) \right]$	
B With interaction b/w H and s	$I_g = I_0 + g \cdot \left[\int d^4x \left(\frac{\kappa}{2} H ^2 s^2 - A_1 H ^2 s \right) \right]$	

Interaction b/w heavy and light fields

• Consider the SM Higgs H coupled to a real singlet field s

Theory	Action in Minkowski space	Probability	Partition function
A No interaction b/w H and s	$I_0 = \int d^4x \left[D_{\mu}H ^2 + \frac{1}{2} (\partial_{\mu}s)^2 - \left(\mu_0^2 H ^2 + \lambda_0 H ^4 + \frac{1}{2} M^2 s^2 + \frac{g_s \cdot A_1}{3} s^3 + \frac{\lambda_s}{4} s^4 \right) \right]$	$P_A = e^{-I_0[H,s]} / Z_0$	$Z_0 = \int d[H]d[s]e^{-I_0[H,s]}$
B With interaction b/w H and s	$I_g = I_0 + g \cdot \left[\int d^4x \left(\frac{\kappa}{2} H ^2 s^2 - A_1 H ^2 s \right) \right]$	$P_B = e^{-I_g[H,s]}/Z_g$	$Z_g = \int d[H]d[s]e^{-I_g[H,s]}$

Interaction b/w heavy and light fields

Consider the SM Higgs H coupled to a real singlet field s

Theory	Action in Minkowski space	Probability	Partition function
A No interaction b/w H and s	$I_0 = \int d^4x \left[D_{\mu}H ^2 + \frac{1}{2} (\partial_{\mu}s)^2 - \left(\mu_0^2 H ^2 + \lambda_0 H ^4 + \frac{1}{2} M^2 s^2 + \frac{g_s \cdot A_1}{3} s^3 + \frac{\lambda_s}{4} s^4 \right) \right]$	$P_A = e^{-I_0[H,s]}/Z_0$	$Z_0 = \int d[H]d[s]e^{-I_0[H,s]}$
B With interaction b/w H and s	$I_g = I_0 + g \cdot \int d^4x \left(\frac{\kappa}{2} H ^2 s^2 - A_1 H ^2 s \right)$	$P_B = e^{-I_g[H,s]}/Z_g$	$Z_g = \int d[H]d[s]e^{-I_g[H,s]}$

• Relative entropy:
$$S(P_A | | P_B) = W_0 - W_g + g \cdot \left(\frac{dW_g}{dg}\right)_{g=0}$$

Consider the SM Higgs H coupled to a real singlet field s

Theory	Action in Minkowski space	Probability	Partition function
A No interaction b/w H and s	$I_0 = \int d^4x \left[D_{\mu}H ^2 + \frac{1}{2} (\partial_{\mu}s)^2 - \left(\mu_0^2 H ^2 + \lambda_0 H ^4 + \frac{1}{2} M^2 s^2 + \frac{g_s \cdot A_1}{3} s^3 + \frac{\lambda_s}{4} s^4 \right) \right]$	$P_A = e^{-I_0[H,s]}/Z_0$	$Z_0 = \int d[H]d[s]e^{-I_0[H,s]}$
B With interaction b/w H and s	$I_g = I_0 + g \cdot \int d^4x \left(\frac{\kappa}{2} H ^2 s^2 - A_1 H ^2 s \right)$	$P_B = e^{-I_g[H,s]}/Z_g$	$Z_g = \int d[H]d[s]e^{-I_g[H,s]}$

• Relative entropy:
$$S(P_A \mid \mid P_B) = W_0 - W_g + g \cdot \left(\frac{dW_g}{dg}\right)_{g=0}$$
 Effective potential:
$$W_g = \int (d^4x)_E \left[\mu_0^2 \mid H \mid^2 + \lambda_0 \mid H \mid^4 - \frac{g^2 \cdot A_1^2 \mid H \mid^4}{2M^2} + \mathcal{O}(g^3)\right]$$

• Consider the SM Higgs H coupled to a real singlet field s

Theory	Action in Minkowski space	Probability	Partition function
A No interaction b/w H and s	$I_0 = \int d^4x \left[D_{\mu}H ^2 + \frac{1}{2} (\partial_{\mu}s)^2 - \left(\mu_0^2 H ^2 + \lambda_0 H ^4 + \frac{1}{2} M^2 s^2 + \frac{g_s \cdot A_1}{3} s^3 + \frac{\lambda_s}{4} s^4 \right) \right]$	$P_A = e^{-I_0[H,s]}/Z_0$	$Z_0 = \int d[H]d[s]e^{-I_0[H,s]}$
B With interaction b/w H and s	$I_g = I_0 + g \cdot \int d^4x \left(\frac{\kappa}{2} H ^2 s^2 - A_1 H ^2 s \right)$	$P_B = e^{-I_g[H,s]}/Z_g$	$Z_g = \int d[H]d[s]e^{-I_g[H,s]}$

$$S(P_A \,|\, |\, P_B) = W_0 - W_g + g \cdot \left(\frac{dW_g}{dg}\right)_{g=0} = \int (d^4x)_E \frac{g^2 \cdot A_1^2 \,|\, H\,|^4}{2M^2} + \mathcal{O}(g^3)$$
 Effective potential:
$$W_g = \int (d^4x)_E \left[\mu_0^2 \,|\, H\,|^2 + \lambda_0 \,|\, H\,|^4 - \frac{g^2 \cdot A_1^2 \,|\, H\,|^4}{2M^2} + \mathcal{O}(g^3)\right]$$

• Consider the SM Higgs H coupled to a real singlet field s

Theory	Action	Probability	Partition function
A	$I_0 = \int d^4x \left[D_{\mu}H ^2 + \frac{1}{2} (\partial_{\mu}s)^2 - \left(\mu_0^2 H ^2 + \lambda_0 H ^4 + \frac{1}{2} M^2 s^2 + \frac{g_s \cdot A_1}{3} s^3 + \frac{\lambda_s}{4} s^4 \right) \right]$	$P_A = e^{-I_0[H,s]}/Z_0$	$Z_0 = \int d[H]d[s]e^{-I_0[H,s]}$
В	$I_g = I_0 + g \cdot \int d^4x \left(\frac{\kappa}{2} H ^2 s^2 - A_1 H ^2 s \right)$	$P_B = e^{-I_g[H,s]}/Z_g$	$Z_g = \int d[H]d[s]e^{-I_g[H,s]}$

Non-negativity of relative entropy:

$$S(P_A | | P_B) = W_0 - W_g + g \cdot \left(\frac{dW_g}{dg}\right)_{g=0} = \int (d^4x)_E \frac{g^2 \cdot A_1^2 |H|^4}{2M^2} + \mathcal{O}(g^3) \ge 0$$

• Consider the SM Higgs H coupled to a real singlet field s

Theory	Action	Probability	Partition function
A	$I_0 = \int d^4x \left[D_{\mu}H ^2 + \frac{1}{2} (\partial_{\mu}s)^2 - \left(\mu_0^2 H ^2 + \lambda_0 H ^4 + \frac{1}{2} M^2 s^2 + \frac{g_s \cdot A_1}{3} s^3 + \frac{\lambda_s}{4} s^4 \right) \right]$	$P_A = e^{-I_0[H,s]}/Z_0$	$Z_0 = \int d[H]d[s]e^{-I_0[H,s]}$
В	$I_g = I_0 + g \cdot \int d^4x \left(\frac{\kappa}{2} H ^2 s^2 - A_1 H ^2 s \right)$	$P_B = e^{-I_g[H,s]}/Z_g$	$Z_g = \int d[H]d[s]e^{-I_g[H,s]}$

Non-negativity of relative entropy:

$$S(P_A | | P_B) = W_0 - W_g + g \cdot \left(\frac{dW_g}{dg}\right)_{g=0} = \int (d^4x)_E \frac{g^2 \cdot A_1^2 |H|^4}{2M^2} + \mathcal{O}(g^3) \ge 0 \implies \frac{g^2 \cdot A_1^2 |H|^4}{2M^2} \ge 0$$

when $\mathcal{O}(g^3)$ is negligible

• Consider the SM Higgs H coupled to a real singlet field s

Theory	Action	Probability	Partition function
A	$I_0 = \int d^4x \left[D_{\mu}H ^2 + \frac{1}{2} (\partial_{\mu}s)^2 - \left(\mu_0^2 H ^2 + \lambda_0 H ^4 + \frac{1}{2} M^2 s^2 + \frac{g_s \cdot A_1}{3} s^3 + \frac{\lambda_s}{4} s^4 \right) \right]$	$P_A = e^{-I_0[H,s]}/Z_0$	$Z_0 = \int d[H]d[s]e^{-I_0[H,s]}$
В	$I_g = I_0 + g \cdot \int d^4x \left(\frac{\kappa}{2} H ^2 s^2 - A_1 H ^2 s \right)$	$P_B = e^{-I_g[H,s]}/Z_g$	$Z_g = \int d[H]d[s]e^{-I_g[H,s]}$

Non-negativity of relative entropy:

$$S(P_A | | P_B) = W_0 - W_g + g \cdot \left(\frac{dW_g}{dg}\right)_{g=0} = \int (d^4x)_E \frac{g^2 \cdot A_1^2 |H|^4}{2M^2} + \mathcal{O}(g^3) \ge 0 \implies \frac{g^2 \cdot A_1^2 |H|^4}{2M^2} \ge 0$$

when $\mathcal{O}(g^3)$ is negligible

Non-negativity of relative entropy holds in Higgs-singlet model

Example 4: Euler-Heisenberg theory

- Consider the U(1) gauge field A_{μ} coupled to a charged fermion ψ

Theory	Action in Minkowski space	Probability	Partition function
A	$I_0 = \int d^4x \left(-\frac{1}{4} F_{\mu\nu} F^{\mu\nu} + \bar{\psi} (i\gamma_\mu \partial^\mu - m) \psi \right)$		
В	$I_g = \int d^4x \left(-\frac{1}{4} F_{\mu\nu} F^{\mu\nu} + \bar{\psi} (i\gamma_\mu \partial^\mu - m) \psi - g \cdot e(\bar{\psi} \gamma_\mu \psi) A^\mu \right)$		

• Consider the U(1) gauge field A_{μ} coupled to a charged fermion ψ

Theory	Action in Minkowski space	Probability	Partition function
A	$I_0 = \int d^4x \left(-\frac{1}{4} F_{\mu\nu} F^{\mu\nu} + \bar{\psi} (i\gamma_\mu \partial^\mu - m) \psi \right)$		
В	$I_g = \int d^4x \left(-\frac{1}{4} F_{\mu\nu} F^{\mu\nu} + \bar{\psi} (i\gamma_\mu \partial^\mu - m) \psi - g \cdot e(\bar{\psi} \gamma_\mu \psi) A^\mu \right)$		

Interaction b/w heavy filed ψ and light field A^μ

• Consider the U(1) gauge field A_{μ} coupled to a charged fermion ψ

	Theory	Action in Minkowski space	Probability	Partition function
•	A	$I_0 = \int d^4x \left(-\frac{1}{4} F_{\mu\nu} F^{\mu\nu} + \bar{\psi} (i\gamma_\mu \partial^\mu - m) \psi \right)$	$P_A = e^{-I_0[A_\mu,\psi]}/Z_0$	$Z_0 = \int d[A^{\mu}] d[\psi] d[\bar{\psi}] e^{-I_0[A^{\mu}, \psi]}$
	В	$I_g = \int d^4x \left(-\frac{1}{4} F_{\mu\nu} F^{\mu\nu} + \bar{\psi} (i\gamma_\mu \partial^\mu - m) \psi - g \cdot e(\bar{\psi} \gamma_\mu \psi) A^\mu \right)$	$P_B = e^{-I_g[A^\mu,\psi]}/Z_g$	$Z_g = \int d[A^{\mu}]d[\psi]d[\bar{\psi}]e^{-I_g[A^{\mu},\psi]}$

Interaction b/w heavy filed ψ and light field A^{μ}

• Consider the U(1) gauge field A_{μ} coupled to a charged fermion ψ

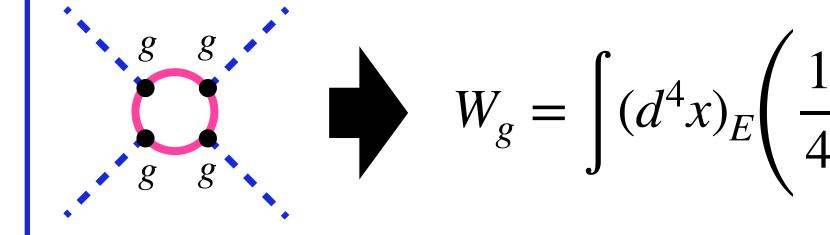
Theory	Action in Minkowski space	Probability	Partition function
A	$I_0 = \int d^4x \left(-\frac{1}{4} F_{\mu\nu} F^{\mu\nu} + \bar{\psi} (i\gamma_\mu \partial^\mu - m) \psi \right)$	$P_A = e^{-I_0[A_\mu,\psi]}/Z_0$	$Z_0 = \int d[A^{\mu}] d[\psi] d[\bar{\psi}] e^{-I_0[A^{\mu}, \psi]}$
В	$I_g = \int d^4x \left(-\frac{1}{4} F_{\mu\nu} F^{\mu\nu} + \bar{\psi} (i\gamma_\mu \partial^\mu - m) \psi - g \cdot e(\bar{\psi} \gamma_\mu \psi) A^\mu \right)$	$P_B = e^{-I_g[A^\mu,\psi]}/Z_g$	$Z_g = \int d[A^{\mu}]d[\psi]d[\bar{\psi}]e^{-I_g[A^{\mu},\psi]}$

• Relative entropy:
$$S(P_A | | P_B) = W_0 - W_g + g \cdot \left(\frac{dW_g}{dg}\right)_{g=0}$$

• Consider the U(1) gauge field A_{u} coupled to a charged fermion ψ

Theory	Action in Minkowski space	Probability	Partition function
A	$I_0 = \int d^4x \left(-\frac{1}{4} F_{\mu\nu} F^{\mu\nu} + \bar{\psi} (i\gamma_\mu \partial^\mu - m) \psi \right)$	$P_A = e^{-I_0[A_\mu,\psi]}/Z_0$	$Z_0 = \int d[A^{\mu}] d[\psi] d[\bar{\psi}] e^{-I_0[A^{\mu}, \psi]}$
В	$I_g = \int d^4x \left(-\frac{1}{4} F_{\mu\nu} F^{\mu\nu} + \bar{\psi} (i\gamma_\mu \partial^\mu - m) \psi - g \cdot e(\bar{\psi} \gamma_\mu \psi) A^\mu \right)$	$P_B = e^{-I_g[A^\mu,\psi]}/Z_g$	$Z_g = \int d[A^{\mu}]d[\psi]d[\bar{\psi}]e^{-I_g[A^{\mu},\psi]}$

• Relative entropy:
$$S(P_A \mid \mid P_B) = W_0 - W_g + g \cdot \left(\frac{dW_g}{dg}\right)_{g=0}$$



$$W_{g} = \int (d^{4}x)_{E} \left(\frac{1}{4} \overline{F}_{\mu\nu} \overline{F}^{\mu\nu} - \frac{1}{2} \frac{g^{4}e^{4}}{6!\pi^{2}m^{4}} (\overline{F}_{\mu\nu} \overline{F}^{\mu\nu})^{2} - \frac{7}{8} \frac{g^{4}e^{4}}{6!\pi^{2}m^{4}} (\overline{F}_{\mu\nu} \overline{F}^{\mu\nu})^{2} + \mathcal{O}(m^{-6}) \right)$$

• Consider the U(1) gauge field A_{μ} coupled to a charged fermion ψ

Theory	Action in Minkowski space	Probability	Partition function
A	$I_0 = \int d^4x \left(-\frac{1}{4} F_{\mu\nu} F^{\mu\nu} + \bar{\psi} (i\gamma_\mu \partial^\mu - m) \psi \right)$	$P_A = e^{-I_0[A_\mu,\psi]}/Z_0$	$Z_0 = \int d[A^{\mu}] d[\psi] d[\bar{\psi}] e^{-I_0[A^{\mu}, \psi]}$
В	$I_g = \int d^4x \left(-\frac{1}{4} F_{\mu\nu} F^{\mu\nu} + \bar{\psi} (i\gamma_\mu \partial^\mu - m) \psi - g \cdot e(\bar{\psi} \gamma_\mu \psi) A^\mu \right)$	$P_B = e^{-I_g[A^\mu,\psi]}/Z_g$	$Z_g = \int d[A^{\mu}]d[\psi]d[\bar{\psi}]e^{-I_g[A^{\mu},\psi]}$

• Relative entropy:
$$S(P_A | | P_B) = W_0 - W_g + g \cdot \left(\frac{dW_g}{dg}\right)_{g=0}$$

$$W_{g} = \int (d^{4}x)_{E} \left(\frac{1}{4} \overline{F}_{\mu\nu} \overline{F}^{\mu\nu} - \frac{1}{2} \frac{g^{4}e^{4}}{6!\pi^{2}m^{4}} (\overline{F}_{\mu\nu} \overline{F}^{\mu\nu})^{2} - \frac{7}{8} \frac{g^{4}e^{4}}{6!\pi^{2}m^{4}} (\overline{F}_{\mu\nu} \overline{F}^{\mu\nu})^{2} + \mathcal{O}(m^{-6}) \right)$$

where we choose $\partial \overline{F} = \mathrm{const}$. to remove dim-6 operators

$$g \to g^2 \cdot \int (d^4x)_E (\partial^2 \overline{F} \overline{F}), \dots \Rightarrow 0, \text{ for } \partial \overline{F} = \text{const.}$$

• Consider the U(1) gauge field A_{u} coupled to a charged fermion ψ

Theory	Action in Minkowski space	Probability	Partition function
A	$I_0 = \int d^4x \left(-\frac{1}{4} F_{\mu\nu} F^{\mu\nu} + \bar{\psi} (i\gamma_\mu \partial^\mu - m) \psi \right)$	$P_A = e^{-I_0[A_\mu,\psi]}/Z_0$	$Z_0 = \int d[A^{\mu}] d[\psi] d[\bar{\psi}] e^{-I_0[A^{\mu}, \psi]}$
В	$I_g = \int d^4x \left(-\frac{1}{4} F_{\mu\nu} F^{\mu\nu} + \bar{\psi} (i\gamma_\mu \partial^\mu - m) \psi - g \cdot e(\bar{\psi} \gamma_\mu \psi) A^\mu \right)$	$P_B = e^{-I_g[A^\mu,\psi]}/Z_g$	$Z_g = \int d[A^{\mu}]d[\psi]d[\bar{\psi}]e^{-I_g[A^{\mu},\psi]}$

• Relative entropy:
$$S(P_A \mid \mid P_B) = W_0 - W_g + g \cdot \left(\frac{dW_g}{dg}\right)_{g=0} = \int (d^4x)_E \left(\frac{1}{2} \frac{g^4 e^4}{6! \pi^2 m^4} (\overline{F}_{\mu\nu} \overline{F}^{\mu\nu})^2 + \frac{7}{8} \frac{g^4 e^4}{6! \pi^2 m^4} (\overline{F}_{\mu\nu} \overline{F}^{\mu\nu})^2 + \mathcal{O}(m^{-6})\right) \geq 0$$

$$W_g = \int (d^4x)_E \left(\frac{1}{4} \overline{F}_{\mu\nu} \overline{F}^{\mu\nu} - \frac{1}{2} \frac{g^4 e^4}{6! \pi^2 m^4} (\overline{F}_{\mu\nu} \overline{F}^{\mu\nu})^2 - \frac{7}{8} \frac{g^4 e^4}{6! \pi^2 m^4} (\overline{F}_{\mu\nu} \overline{F}^{\mu\nu})^2 + \mathcal{O}(m^{-6}) \right)$$

where we choose $\partial \overline{F} = \mathrm{const}$. to remove dim-6 operators

$$g \to g^2 \cdot \int (d^4x)_E (\partial^2 \overline{F} \overline{F}), \dots \Rightarrow 0, \text{ for } \partial \overline{F} = \text{const.}$$

• Consider the U(1) gauge field A_{μ} coupled to a charged fermion ψ

Theory	Action in Minkowski space	Probability	Partition function
A	$I_0 = \int d^4x \left(-\frac{1}{4} F_{\mu\nu} F^{\mu\nu} + \bar{\psi} (i\gamma_\mu \partial^\mu - m) \psi \right)$	$P_A = e^{-I_0[A_\mu,\psi]}/Z_0$	$Z_0 = \int d[A^{\mu}] d[\psi] d[\bar{\psi}] e^{-I_0[A^{\mu}, \psi]}$
В	$I_g = \int d^4x \left(-\frac{1}{4} F_{\mu\nu} F^{\mu\nu} + \bar{\psi} (i\gamma_\mu \partial^\mu - m) \psi - g \cdot e(\bar{\psi} \gamma_\mu \psi) A^\mu \right)$	$P_B = e^{-I_g[A^\mu,\psi]}/Z_g$	$Z_g = \int d[A^{\mu}]d[\psi]d[\bar{\psi}]e^{-I_g[A^{\mu},\psi]}$

Relative entropy:

$$S(P_A \mid \mid P_B) = W_0 - W_g + g \cdot \left(\frac{dW_g}{dg}\right)_{g=0} = \int (d^4x)_E \left(\frac{1}{2} \frac{g^4 e^4}{6!\pi^2 m^4} (\overline{F}_{\mu\nu} \overline{F}^{\mu\nu})^2 + \frac{7}{8} \frac{g^4 e^4}{6!\pi^2 m^4} (\overline{F}_{\mu\nu} \overline{\overline{F}}^{\mu\nu})^2 + \mathcal{O}(m^{-6})\right) \ge 0$$
dim-8 operators

Relative entropy constrains Wilson coefficients of dim-8 operator

- Consider the U(1) gauge field A_{μ} coupled to a charged fermion ψ

	Theory	Action in Minkowski space	Probability	Partition function
•	A	$I_0 = \int d^4x \left(-\frac{1}{4} F_{\mu\nu} F^{\mu\nu} + \bar{\psi} (i\gamma_\mu \partial^\mu - m) \psi \right)$	$P_A = e^{-I_0[A_{\mu},\psi]}/Z_0$	$Z_0 = \int d[A^{\mu}] d[\psi] d[\bar{\psi}] e^{-I_0[A^{\mu}, \psi]}$
	В	$I_g = \int d^4x \left(-\frac{1}{4} F_{\mu\nu} F^{\mu\nu} + \bar{\psi} (i\gamma_\mu \partial^\mu - m) \psi - g \cdot e(\bar{\psi} \gamma_\mu \psi) A^\mu \right)$	$P_B = e^{-I_g[A^\mu,\psi]}/Z_g$	$Z_g = \int d[A^{\mu}]d[\psi]d[\bar{\psi}]e^{-I_g[A^{\mu},\psi]}$

Relative entropy:

$$S(P_A \mid \mid P_B) = W_0 - W_g + g \cdot \left(\frac{dW_g}{dg}\right)_{g=0} = \int (d^4x)_E \left(\frac{1}{2} \frac{g^4 e^4}{6!\pi^2 m^4} (\overline{F}_{\mu\nu} \overline{F}^{\mu\nu})^2 + \frac{7}{8} \frac{g^4 e^4}{6!\pi^2 m^4} (\overline{F}_{\mu\nu} \overline{F}^{\mu\nu})^2 + \mathcal{O}(m^{-6})\right) \ge 0$$
dim-8 operators

Relative entropy constrains Wilson coefficients of dim-8 operator

⇒ Similar results for SU(N) gauge fields are obtained when dim-8 operators are generated through the interaction between heavy and light fields.

Example 5: SMEFT SU(N) gauge bosonic operators

Relative entropy when dim-8 operators are generated by interaction b/w heavy and light fields:

$$S(P_A | | P_B) = W_0 - W_g + g \cdot (dW_g/dg)_{g=0} = \int (d^4x)_E \frac{1}{\Lambda^4} \sum_i c_i \mathcal{O}_i \ge 0$$

*assume the interaction doesn't involve higher-derivative terms

$$\mathcal{O}_{1}^{F^{4}} = (F_{\mu\nu}^{a}F^{a,\mu\nu})(F_{\rho\sigma}^{b}F^{b,\rho\sigma}) \qquad \mathcal{O}_{6}^{F^{4}} = d^{abe}d^{cde}(F_{\mu\nu}^{a}\tilde{F}^{b,\mu\nu})(F_{\rho\sigma}^{c}\tilde{F}^{d,\rho\sigma}) \qquad \tilde{\mathcal{O}}_{3}^{F^{4}} = d^{abe}d^{cde}(F_{\mu\nu}^{a}F^{b,\mu\nu})(F_{\rho\sigma}^{c}\tilde{F}^{d,\rho\sigma})$$

$$\mathcal{O}_{2}^{F^{4}} = (F_{\mu\nu}^{a}\tilde{F}^{a,\mu\nu})(F_{\rho\sigma}^{b}\tilde{F}^{b,\rho\sigma}) \qquad \mathcal{O}_{7}^{F^{4}} = d^{ace}d^{bde}(F_{\mu\nu}^{a}F^{b,\mu\nu})(F_{\rho\sigma}^{c}F^{d,\rho\sigma}) \qquad \tilde{\mathcal{O}}_{4}^{F^{4}} = d^{ace}d^{bde}(F_{\mu\nu}^{a}F^{b,\mu\nu})(F_{\rho\sigma}^{c}\tilde{F}^{d,\rho\sigma})$$

$$\mathcal{O}_{3}^{F^{4}} = (F_{\mu\nu}^{a}F^{b,\mu\nu})(F_{\rho\sigma}^{a}F^{b,\rho\sigma}) \qquad \mathcal{O}_{8}^{F^{4}} = d^{ace}d^{bde}(F_{\mu\nu}^{a}\tilde{F}^{b,\mu\nu})(F_{\rho\sigma}^{c}\tilde{F}^{d,\rho\sigma})$$

$$\mathcal{O}_{3}^{F^{4}} = (F_{\mu\nu}^{a}F^{b,\mu\nu})(F_{\rho\sigma}^{a}\tilde{F}^{b,\rho\sigma}) \qquad \mathcal{O}_{8}^{F^{4}} = d^{ace}d^{bde}(F_{\mu\nu}^{a}\tilde{F}^{b,\mu\nu})(F_{\rho\sigma}^{c}\tilde{F}^{d,\rho\sigma})$$

$$\mathcal{O}_{5}^{F^{4}} = (F_{\mu\nu}^{a}\tilde{F}^{b,\mu\nu})(F_{\rho\sigma}^{a}\tilde{F}^{b,\rho\sigma}) \qquad \mathcal{O}_{1}^{F^{4}} = (F_{\mu\nu}^{a}F^{b,\mu\nu})(F_{\rho\sigma}^{a}\tilde{F}^{b,\rho\sigma})$$

$$\mathcal{O}_{5}^{F^{4}} = d^{abe}d^{cde}(F_{\mu\nu}^{a}F^{b,\mu\nu})(F_{\rho\sigma}^{c}\tilde{F}^{b,\rho\sigma}) \qquad \mathcal{O}_{1}^{F^{a}} = (F_{\mu\nu}^{a}F^{b,\mu\nu})(F_{\rho\sigma}^{a}\tilde{F}^{b,\rho\sigma})$$

$$\mathcal{O}_{5}^{F^{4}} = d^{abe}d^{cde}(F_{\mu\nu}^{a}F^{b,\mu\nu})(F_{\rho\sigma}^{c}\tilde{F}^{b,\rho\sigma}) \qquad \mathcal{O}_{1}^{F^{a}} = (F_{\mu\nu}^{a}F^{b,\mu\nu})(F_{\rho\sigma}^{a}\tilde{F}^{b,\rho\sigma})$$

$$\mathcal{O}_{5}^{F^{4}} = (F_{\mu\nu}^{a}F^{b,\mu\nu})(F_{\rho\sigma}^{c}\tilde{F}^{b,\rho\sigma}) \qquad \mathcal{O}_{1}^{F^{a}} = (F_{\mu\nu}^{a}F^{b,\mu\nu})(F_{\rho\sigma}^{a}\tilde{F}^{b,\rho\sigma}) \qquad \mathcal{O}_{2}^{F^{a}} = (F_{\mu\nu}^{a}F^{b,\mu\nu})(F_{\rho\sigma}^{a}\tilde{F}^{b,\rho\sigma})$$

$$\mathcal{O}_{5}^{F^{a}} = d^{abe}d^{cde}(F_{\mu\nu}^{a}F^{b,\mu\nu})(F_{\rho\sigma}^{c}F^{b,\rho\sigma}) \qquad \mathcal{O}_{1}^{F^{a}} = (F_{\mu\nu}^{a}F^{b,\mu\nu})(F_{\rho\sigma}^{a}\tilde{F}^{b,\rho\sigma})$$

$$\mathcal{O}_{1}^{F^{a}} = (F_{\mu\nu}^{a}F^{b,\mu\nu})(F_{\rho\sigma}^{c}\tilde{F}^{b,\rho\sigma}) \qquad \mathcal{O}_{2}^{F^{a}} = (F_{\mu\nu}^{a}F^{b,\mu\nu})(F_{\rho\sigma}^{a}\tilde{F}^{b,\rho\sigma}) \qquad \mathcal{O}_{3}^{F^{a}} = (F_{\mu\nu}^{a}F^{b,\mu\nu})(F_{\rho\sigma}^{c}\tilde{F}^{b,\rho\sigma})$$

$$\mathcal{O}_{1}^{F^{a}} = (F_{\mu\nu}^{a}F^{b,\mu\nu})(F_{\rho\sigma}^{c}\tilde{F}^{b,\rho\sigma}) \qquad \mathcal{O}_{2}^{F^{a}} = (F_{\mu\nu}^{a}F^{b,\mu\nu})(F_{\rho\sigma}^{c}\tilde{F}^{b,\rho\sigma}) \qquad \mathcal{O}_{3}^{F^{a}} = (F_{\mu\nu}^{a}F^{b,\mu\nu})(F_{\rho\sigma}^{c}\tilde{F}^{b,\rho\sigma}) \qquad \mathcal{O}_{3}^{F^{a}} = (F_{\mu\nu}^{a}F^{b,\mu\nu})(F_{\rho\sigma}^{c}\tilde{F}^{b,\rho\sigma}) \qquad \mathcal{O}_{3}^{F^{a}} = (F_{\mu\nu}^{a}F^{b,\mu\nu})(F_{\rho\sigma}^{c}\tilde{F}^{b,\rho\sigma}) \qquad \mathcal{O$$

Example 5: SMEFT SU(N) gauge bosonic operators

Relative entropy when dim-8 operators are generated by interaction b/w heavy and light fields:

$$S(P_A | | P_B) = W_0 - W_g + g \cdot (dW_g/dg)_{g=0} = \int (d^4x)_E \frac{1}{\Lambda^4} \sum_i c_i \mathcal{O}_i \ge 0$$

*assume the interaction doesn't involve higher-derivative terms

- Classical solution of
$$\partial^{\mu}F^{a}_{\mu\nu} + gf^{abc}A^{\mu,b}F^{c}_{\mu\nu} = 0$$
: $A^{a}_{\mu} = u^{a}_{1}\epsilon_{1\mu}w_{1} + u^{a}_{2}\epsilon_{2\mu}w_{2}$ with $f^{abc}u^{a}_{1}u^{b}_{2} = 0$, $\partial_{\mu}w_{1} = l_{\mu}$, and $\partial_{\mu}w_{2} = k_{\mu}$

* $l_{\mu},~k_{\mu}$: constant vectors

Example 5 : SMEFT SU(N) gauge bosonic operators

• Relative entropy when dim-8 operators are generated by interaction b/w heavy and light fields:

$$S(P_A | | P_B) = W_0 - W_g + g \cdot (dW_g/dg)_{g=0} = \int (d^4x)_E \frac{1}{\Lambda^4} \sum_i c_i \mathcal{O}_i \ge 0$$

*assume the interaction doesn't involve higher-derivative terms

- Classical solution of $\partial^{\mu}F^{a}_{\mu\nu} + gf^{abc}A^{\mu,b}F^{c}_{\mu\nu} = 0$: $A^{a}_{\mu} = u^{a}_{1}\epsilon_{1\mu}w_{1} + u^{a}_{2}\epsilon_{2\mu}w_{2}$ with $f^{abc}u^{a}_{1}u^{b}_{2} = 0$, $\partial_{\mu}w_{1} = l_{\mu}$, and $\partial_{\mu}w_{2} = k_{\mu}$

 $* l_u, k_u$: constant vectors

•
$$U(1)_Y$$
: $c_1^{B^4} \ge 0$, $c_2^{B^4} \ge 0$, $4c_1^{B^4}c_2^{B^4} \ge (\tilde{c}_1^{B^4})^2$,

•
$$SU(2)_L$$
: $c_1^{W^4} + c_3^{W^4} \ge 0$, $c_2^{W^4} + c_4^{W^4} \ge 0$, $4(c_1^{W^4} + c_3^{W^4})(c_2^{W^4} + c_4^{W^4}) \ge (\tilde{c}_1^{W^4} + \tilde{c}_2^{W^4})^2$,

•
$$SU(3)_C$$
: $2c_1^{G^4} + c_3^{G^4} \ge 0$, $3c_2^{G^4} + 2c_5^{G^4} \ge 0$, $3c_2^{G^4} + 3c_4^{G^4} + c_6^{G^4} \ge 0$, $3c_4^{G^4} + 2c_6^{G^4} \ge 0$, $4(3c_1^{G^4} + 3c_3^{G^4} + c_5^{G^4})(3c_2^{G^4} + 3c_4^{G^4} + c_6^{G^4}) \ge (3\tilde{c}_1^{G^4} + 3\tilde{c}_2^{G^4} + \tilde{c}_3^{G^4})^2$ $4(3c_3^{G^4} + 2c_5^{G^4})(3c_4^{G^4} + 2c_6^{G^4}) \ge (3\tilde{c}_2^{G^4} + 2\tilde{c}_3^{G^4})^2$

Example 5 : SMEFT SU(N) gauge bosonic operators

• Relative entropy when dim-8 operators are generated by interaction b/w heavy and light fields:

$$S(P_A | | P_B) = W_0 - W_g + g \cdot (dW_g/dg)_{g=0} = \int (d^4x)_E \frac{1}{\Lambda^4} \sum_i c_i \mathcal{O}_i \ge 0$$

*assume the interaction doesn't involve higher-derivative terms

- Classical solution of $\partial^{\mu}F^{a}_{\mu\nu} + gf^{abc}A^{\mu,b}F^{c}_{\mu\nu} = 0$: $A^{a}_{\mu} = u^{a}_{1}\epsilon_{1\mu}w_{1} + u^{a}_{2}\epsilon_{2\mu}w_{2}$ with $f^{abc}u^{a}_{1}u^{b}_{2} = 0$, $\partial_{\mu}w_{1} = l_{\mu}$, and $\partial_{\mu}w_{2} = k_{\mu}$

* l_{μ}, k_{μ} : constant vectors

- $U(1)_Y$: $c_1^{B^4} \ge 0$, $c_2^{B^4} \ge 0$, $4c_1^{B^4}c_2^{B^4} \ge (\tilde{c}_1^{B^4})^2$,
- $SU(2)_L$: $c_1^{W^4} + c_3^{W^4} \ge 0$, $c_2^{W^4} + c_4^{W^4} \ge 0$, $4(c_1^{W^4} + c_3^{W^4})(c_2^{W^4} + c_4^{W^4}) \ge (\tilde{c}_1^{W^4} + \tilde{c}_2^{W^4})^2$,

U(1) and SU(2) bounds are the same as positivity bounds from unitarity and causality

[G.N. Remmen, and N.L. Rodd, arXiv:1908.09845]

•
$$SU(3)_C$$
: $2c_1^{G^4} + c_3^{G^4} \ge 0$, $3c_2^{G^4} + 2c_5^{G^4} \ge 0$, $3c_2^{G^4} + 3c_4^{G^4} + c_6^{G^4} \ge 0$, $3c_4^{G^4} + 2c_6^{G^4} \ge 0$, $4(3c_1^{G^4} + 3c_3^{G^4} + c_5^{G^4})(3c_2^{G^4} + 3c_4^{G^4} + c_6^{G^4}) \ge (3\tilde{c}_1^{G^4} + 3\tilde{c}_2^{G^4} + \tilde{c}_3^{G^4})^2$ $4(3c_3^{G^4} + 2c_5^{G^4})(3c_4^{G^4} + 2c_6^{G^4}) \ge (3\tilde{c}_2^{G^4} + 2\tilde{c}_3^{G^4})^2$

SU(3) bounds are stronger than positivity bounds from unitarity and causality

Summary

- Differences between theories with and without interaction characterize UV information.
- We quantified their differences by relative entropy.
- When EFTs are generated through interaction

$$I_I[\phi, \Phi] = \int (d^4x)_E \mathcal{O}[\Phi] \otimes J[\phi] = \text{heavy}$$
 light

where we assume $J[\phi]$ does not involve higher-derivative terms

we found that the non-negativity of relative entropy constrains EFTs, e.g., the SU(N) gauge bosonic operators in the SMEFT.

Relative entropy

*
$$\operatorname{Tr}[\rho_A] = \operatorname{Tr}[\rho_B] = 1, \ \rho_A = \rho_A^{\dagger}, \ \rho_B = \rho_B^{\dagger}$$

• Definition of relative entropy b/w two probability distribution functions ho_A and ho_B

$$S(\rho_A \mid \mid \rho_B) \equiv \text{Tr} \left[\rho_A \ln \rho_A - \rho_A \ln \rho_B \right]$$

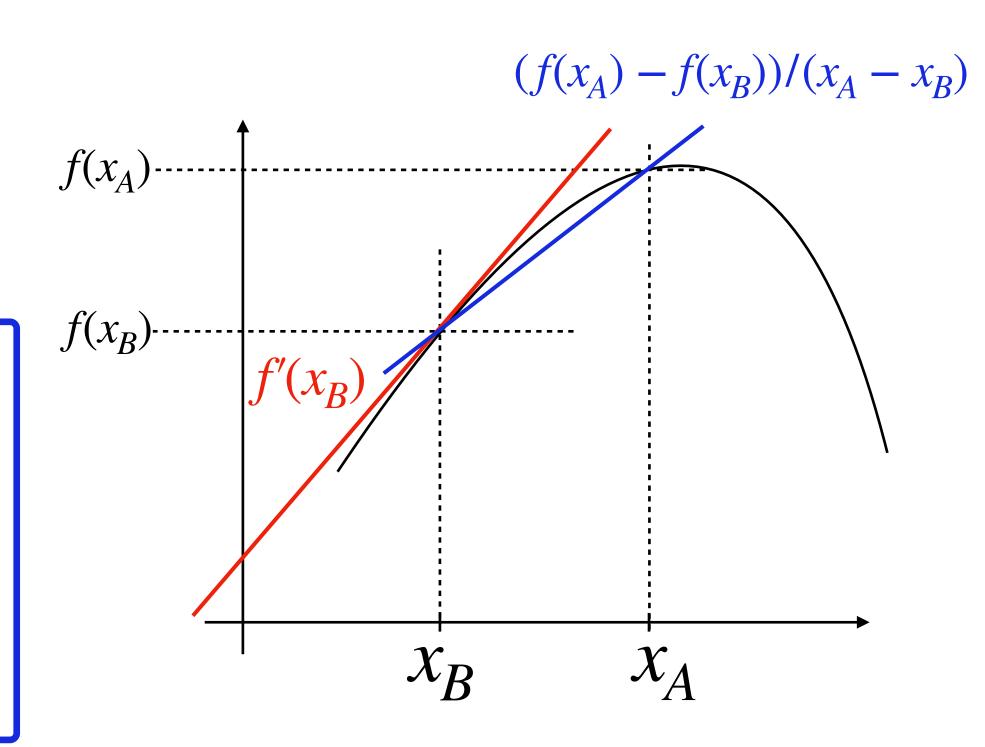
- relative entropy is non-negative

A proof:

$$f(x)$$
: a convex function $\Rightarrow \text{Tr}[f(\rho_A) - f(\rho_B) - (\rho_A - \rho_B)f'(\rho_B)] \le 0$

 $f(x) \rightarrow -x \ln x$ (convex function)

$$S(\rho_A \mid \mid \rho_B) \ge 0$$



* equality holds if and only if $\rho_A = \rho_B$ Property of convex function: $f(x_A) - f(x_B) \le (x_A - x_B) \cdot f'(x_B)$

Relative entropy characterizes difference between two probability distributions

Precondition for non-negativity of relative entropy b/w theories

• For probability distribution functions ρ_A and ρ_B , i.e., ${\rm Tr}[\rho_A]={\rm Tr}[\rho_B]=1, \;\; \rho_A=\rho_A^\dagger, \;\; \rho_B=\rho_B^\dagger$

$$S(\rho_A \mid \mid \rho_B) \equiv \text{Tr} \left[\rho_A \ln \rho_A - \rho_A \ln \rho_B \right] \ge 0$$

where probability distribution functions are defined as $ho_A \equiv e^{-\beta \cdot H_A}/Z_A$, $ho_B \equiv e^{-\beta \cdot H_B}/Z_B$

$$\rho_A = \rho_A^{\dagger}, \quad \rho_B = \rho_B^{\dagger} \Leftrightarrow H_A = H_A^{\dagger}, \quad H_B = H_B^{\dagger}$$

Entropy consideration is based on the Hermiticity of Hamiltonian of theories A and B, i.e., unitariy of theories A and B

If unitarity of theories A and B is violated, non-negativity of relative entropy is also violated

Example: Tree level matching of Higgs-singlet model

• Consider the SM Higgs H coupled to a real singlet field s

Theory	Action in Minkowski space	Probability	Partition function
A No interaction b/w H and s	$I_0 = \int d^4x \left[D_{\mu}H ^2 + \frac{1}{2} (\partial_{\mu}s)^2 - \left(\mu_0^2 H ^2 + \lambda_0 H ^4 + \frac{1}{2} M^2 s^2 + \frac{g_s \cdot A_1}{3} s^3 + \frac{\lambda_s}{4} s^4 \right) \right]$	$P_A = e^{-I_0[H,s]}/Z_0$	$Z_0 = \int d[H]d[s]e^{-I_0[H,s]}$
B With interaction b/w H and s	$I_g = I_0 + g \cdot \int d^4x \left(\frac{\kappa}{2} H ^2 s^2 - A_1 H ^2 s \right)$	$P_B = e^{-I_g[H,s]}/Z_g$	$Z_g = \int d[H]d[s]e^{-I_g[H,s]}$

Relative entropy:

$$S(P_A \mid \mid P_B) = W_0 - W_g + g \cdot \left(\frac{dW_g}{dg}\right)_{g=0} = \int (d^4x)_E \frac{g^2 \cdot A_1^2 \mid H \mid^4}{2M^2} \left[1 - \frac{2g}{M^4} \cdot \frac{2g_s A_1^2 + 3\kappa M^2}{6} \mid H \mid^2\right] + \mathcal{O}(g^4)$$
 Effective potential:
$$W_g = \int (d^4x)_E \left[\mu_0^2 \mid H \mid^2 + \lambda_0 \mid H \mid^4 - \frac{g^2 \cdot A_1^2 \mid H \mid^4}{2M^2} \left[1 - \frac{2g}{M^4} \cdot \frac{2g_s A_1^2 + 3\kappa M^2}{6} \mid H \mid^2\right]\right] + \mathcal{O}(g^4)$$

Example: Tree level matching of Higgs-singlet model

• Consider the SM Higgs H coupled to a real singlet field s

Theory	Action	Probability	Partition function
A	$I_0 = \int d^4x \left[D_{\mu}H ^2 + \frac{1}{2} (\partial_{\mu}s)^2 - \left(\mu_0^2 H ^2 + \lambda_0 H ^4 + \frac{1}{2} M^2 s^2 + \frac{g_s \cdot A_1}{3} s^3 + \frac{\lambda_s}{4} s^4 \right) \right]$	$P_A = e^{-I_0[H,s]}/Z_0$	$Z_0 = \int d[H]d[s]e^{-I_0[H,s]}$
В	$I_g = I_0 + g \cdot \int d^4x \left(\frac{\kappa}{2} H ^2 s^2 - A_1 H ^2 s \right)$	$P_B = e^{-I_g[H,s]}/Z_g$	$Z_g = \int d[H]d[s]e^{-I_g[H,s]}$

Non-negativity of relative entropy:

$$S(P_A | | P_B) = W_0 - W_g + g \cdot \left(\frac{dW_g}{dg}\right)_{g=0} = \int (d^4x)_E \frac{g^2 \cdot A_1^2 |H|^4}{2M^2} \left[1 - \frac{2g}{M^4} \cdot \frac{2g_s A_1^2 + 3\kappa M^2}{6} |H|^2\right] + \mathcal{O}(g^4) \ge 0$$

$$\Rightarrow 1 - \frac{2g}{M^4} \cdot \frac{2g_s A_1^2 + 3\kappa M^2}{6} |H|^2 \ge 0 \quad \text{when } \mathcal{O}(g^4) \text{ is negligible}$$

Relative entropy provides a criterion of validity of EFT descriptions up to $\mathcal{O}(g^3)$